STORMWATER REPORT

for

PARKING IMPROVEMENTS DUDLEY HOUSING AUTHORITY, JOSHUA PLACE-667-1

22 Joshua Place Dudley, MA 01571

Prepared for:

Dudley Housing Authority 22 Joshua Place Dudley, MA 01571

Date:

October 11, 2023

Prepared By:

100 Grove Street Worcester, MA 01605 T 508-856-0321 F 508-856-0357 gravesengineering.com

electronically stamped by Michael Andrade, P.E: 10/02/23

TABLE OF CONTENTS

> Narrative

- Site Information
- HydroCAD Report Summary Tables
- MassDEP Stormwater Management Compliance Data
- > Appendix A MassDEP Stormwater Report Checklist
- > Appendix B HydroCAD Reports Pre-development 2, 10, 25, & 100-year
- > Appendix C HydroCAD Reports Post-development 2, 10, 25, & 100-year
- > Appendix D USDA-NRCS Site Soils Map
- > Appendix E Long-Term Drainage System Operation & Maintenance Plan
- > Appendix F Long-Term Pollution Prevention Plan
- > Appendix G TSS Removal Calculation Worksheet

NARRATIVE

Project Description

Site Location:	Parking Improvements
	Dudley Housing Authority
	22 Joshua Place, Dudley, MA

Development Type: Elderly Housing, Multi-Family Residential

Project Summary:

The proposed project consists of full-depth reclamation and repaving of an existing parking lot, and the installation of additional parking spaces and related stormwater improvements on a developed site.

A drainage and stormwater management system will treat and attenuate runoff from the project in full compliance with MassDEP Stormwater Management Standards.

Existing Site Con	nditions
Location:	The project site is located at 22 Joshua Place.
Ground Cover:	The ground cover in the drainage study area is a mix of impervious, lawn, and woods.
Slopes:	The portion of the site in the existing parking lot which is outside of the drainage study area generally slopes from south to north towards a catch basin at the end of the driveway. The drainage area of the site drains from south to north towards abutters 191 West Main Dudley, LLC and Gentex Optics, Inc.
Soil Types:	Site soil types as mapped by the USDA-NRCS are Paxton fine sandy loam and Scituate fine sandy loam (map unit symbols 307B and 315B respectively). These soils are classified as hydrologic soil group (HSG) "C". Refer to Appendix D for more detailed USDA-NRCS soil information and to the site plans for onsite soil testing logs.

HYDROLOGY CALCULATIONS

Methodology

Peak rate of runoff flows were calculated using SCS TR-20 and TR-55 methodology as implemented by the HydroCAD Stormwater Modeling System computer program. The 2, 10, 25, and 100-year storm events were analyzed with the HydroCAD program using site-specific NRCC rainfall frequency data as follows:

Rainfall A	Amounts (inche	s) by Frequency	y (NRCC)
2 Year	10 Year	25 Year	100 Year
3.19	4.73	5.92	8.35

Pre-Development

The total pre-development drainage area studied in this report consists of approximately 6.755 sq.ft. The pre-development hydrology has been modeled as one subcatchment that drains to a single discharge point (design point).

<u>Design Point #1</u>: This design point represents runoff from the proposed parking spaces to the northern portion of the property.

Refer to Appendix B for the HydroCAD output sheets for each storm event. A summary of the peak rate of runoff for the design point for each storm is as follows:

Pre-Development Pea	k Rate of Ru	noff (cfs)		
	2 Year	10 Year	25 Year	100 Year
Design Point #1 (North)	0.17	0.36	0.52	0.86

Post-Development

The total post-development drainage area is the same total area as the pre-development and is broken into two subcatchments that ultimately drain to the same design point.

Refer to Appendix C for the HydroCAD output sheets for each storm event. A summary of the peak rate of runoff for the design point for each storm is as follows:

Post-Development Peak Rate of Runoff (cfs)						
	2 Year	10 Year	25 Year	100 Year		
Design Point #1 (North)	0.12	0.36	0.52	0.83		

The total net change in peak rate of runoff from pre-development to post-development at the design point for each storm is as follows:

Comparison of Pre- vs. Post-Development Peak Rate of Runoff (cfs) Net Change					
	2 Year	10 Year	25 Year	100 Year	
Design Point #1 (North)	-0.05	0.00	0.00	-0.03	

STORMWATER MANAGEMENT

To demonstrate compliance with MassDEP Stormwater Management, we offer the following in response to each of the 10 Standards.

Drain Outfall Riprap Sizing Calculations (Stormwater Management Standard 1)

There are two drain outfalls that requires the design of a riprap apron. We have utilized the Connecticut Guidelines for Soil and Erosion Control outfall protection design criteria as our experience has found this to be a conservative design method that results in a stable outfall structures and good velocity dissipation. The calculations are as follows:

 $L= \{1.7Q/D^{1.5}\} + 8D$ where, L=length of the riprap apron (ft.) Q =anticipated design flow (25-year storm flow in this case) (ft³/s) D=diameter of outlet pipe (ft.)

W=3D+L where, W=width of riprap apron at end of apron

Proposed Infiltration Basin Outfall (6" Culvert) Q₂₅=0.17 cfs (from HydroCAD) D= 0.5' (6")

 $L = \{(1.7)(0.17) / (0.5)^{1.5}\} + (8)(0.5) = \frac{4.82 \text{ feet}}{1000}$

W=(3)(0.5) + 4.82 = 6.32 feet

Peak Rate Attenuation (Stormwater Management Standard 2)

Runoff is attenuated for the 2, 10, 25 and 100-year storm events.

Recharge to Groundwater (Stormwater Management Standard 3)

USDA-NRCS soil survey indicates site soils in area of proposed impervious are hydrologic group C soils. The recharge calculations are as follows:

Required recharge volume

Required Recharge Volume (R_v) = F x Impervious Area where, F = Target Depth Factor (in.) F = 0.25" for 'C' Soils

Net increase in site impervious area (pre to post conditions) = 1,990 ft²

 $R_v = (0.25"/12") \times 1,990 \text{ ft}^2 = 41.46 \text{ ft}^3$

The proposed bioretention area has a total volume of 172 ft³ below the lowest outlet, thus Standard 3 is satisfied. See attached HydroCAD Stage-Area-Storage worksheet demonstrating the volume of the system.

Based upon an exfiltration rate of 0.27 in./hr. (Rawls rate for silt loam 'C' soils), the drawdown time is calculated as follows:

Time_{drawdown} = R_v / (K x Bottom Area) where,

 R_v = recharge BMP storage volume K= Saturated Hydraulic Conductivity (Rawls) Rate

Bioretention Area

Time_{drawdown} = $41.46 \text{ ft}^3 / (0.27 \text{ in./hr.}/12" \times 201.43 \text{ ft}^2) = 9 \text{ hours} < 72 \text{ hours}.$

Water Quality Calculations (Stormwater Management Standard 4)

The site does not discharge to any known or mapped Critical Areas thus the required Water Quality Volume shall be calculated using 0.5 inches of runoff times the impervious area. Refer to Appendix G for detailed TSS calculations that demonstrate better than 80% TSS removal rates for the site.

Water Quality Volume: V= 0.5"/12 x AIMP

V= $0.5^{\circ}/12 \times 1,990 \text{ ft}^2 = \underline{82.92 \text{ ft}^3 \text{ required volume}}$ Provided volume = 172 ft^3 (below lowest orifice)

(see HydroCAD stage-storage-volume sheet following this Narrative)

Additionally, a Long-Term Pollution Prevention Plan has been developed for the site (refer to Appendix F).

Higher Potential Pollutant Loads (Stormwater Management Standard 5)

The site's existing and proposed use (residential) does not constitute a land use with a higher potential pollutant load (LUHPPL).

Protection of Critical Areas (Stormwater Management Standard 6)

The site does not discharge to a known or mapped Critical Area.

Redevelopment Projects (Stormwater Management Standard 7)

The site does not meet the criteria of a redevelopment project as the net impervious area will increase.

Erosion/Sediment Control (Stormwater Management Standard 8)

Site development plans provide details for erosion and sediment control during construction.

Operation/Maintenance Plan (Stormwater Management Standard 9)

Refer to Appendix E for the site Long-Term Drainage System Operation & Maintenance Plan.

Illicit Discharge Compliance Statement (Stormwater Management Standard 10)

There are no existing illicit discharges to GEI or the owner's knowledge and there are no proposed illicit discharges. There are no cross-connections between the stormwater system and the wastewater system and discharges to each will remain separate; these systems are shown on the project drawings.

23101_Post-Development

541.30

Prepared by Graves Engineering, Inc HydroCAD® 10.20-3c s/n 00448 © 2023 HydroCAD Software Solutions LLC

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
540.00	201	0	541.32	599	519
540.02	207	4	541.34	606	531
540.04	213	8	541.36	613	543
540.06	218	13	541.38	620	556
540.08	224	17	541.40	627	568
540.10	230	22	541.42	633	581
540.12	236	26	541.44	640	593
540.14	241	31	541.46	647	606
540.16	247	36	541.48	654	619
540.18	253	41	541.50	661	033
540.20	259	40	541.52	675	040 650
540.22	204	51	541.54	682	673
540.24	270	57 67	541.50	689	686
540.28	270	68	541.60	695	700
540.30	287	73	541.62	702	714
540.32	293	79	541.64	709	728
540.34	299	85	541.66	716	743
540.36	305	91	541.68	723	757
540.38	310	97	541.70	730	772
540.40	316	103	541.72	737	786
540.42	322	110	541.74	744	801
540.44	328	116	541.76	750	816
540.46	333	123	541.78	757	831
540.48	339	130	541.80	764	846
540.50	345	137	541.82	771	862
540.52	351	143	541.84	7/8	8//
540.54	35/	151	541.80	785	893
540.50	302	100	541.00	792	909
540.50	374	172	541.90	805	924
540.62	380	180	541.94	812	957
540.64	385	188	541.96	819	973
540.66	391	195	541.98	826	989
540.68	397	203	542.00	833	1,006
540.70	403	211	1		
540.72	408	219	1		
540.74	414	228			
540.76	420	236		MUME	DO
540.78	426	244		VUUNE	RETON
540.80	431	253			
540.82	437	262			
540.04	445	270			
540.88	454	275			
540.90	460	298			
540.92	466	307			
540.94	472	316			
540.96	477	326			
540.98	483	335			
541.00	489	345			
541.02	496	355			
541.04	503	365			
541.06	510	375			
541.08	517	385			
541.10	523	396			
541.12	530	400			
541.14 541.16	537	41/			
541 18	551	430			
541 20	558	450			
541.22	565	461			
541.24	572	472			
541.26	578	484			
541.28	585	495			

Stage-Area-Storage for Pond 1P: Infiltration Basin

,

From Lowest outlet = 172 cf

Extreme Precipitation Tables

Northeast Regional Climate Center Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Date/Time	Elevation	Longitude	Latitude	Location	State	Smoothing	
Fri Oct 06 2023 15:58:44 GMT-0400 (Eastern Daylight Time)	160 feet	71.912 degrees West	42.039 degrees North			Yes	Metadata for Point

Extreme Precipitation Estimates

$500 \mathrm{yr}$	$200 \mathrm{yr}$	$100 \mathrm{yr}$	50yr	25уг	10yr	5yr	2уг	lyr	
1.02	0.85	0.73	0.64	0.57	0.48	0.43	0.36	0.31	5min
1.68	1.38	1.19	1.03	0.91	0.76	99.0	55.0	0.47	10min
2.18	1.79	1.53	1.32	1.16	0.95	0.83	0.69	0.59	15min
3.16	2.56	2.17	1.86	1.60	1.30	1.11	0.91	0.77	30min
4.42	3.52	2.97	2.50	2.11	1.69	1.42	1.14	0.96	60min
5.83	4.62	3.88	3.25	2.71	2.15	1.80	1.43	1.20	120min
500yr	$200 \mathrm{yr}$	$100 \mathrm{yr}$	50yr	25yr	10yr	5yr	$2 \mathrm{yr}$	1yr	
3.82	3.04	2.56	2.16	1.82	1.46	1.23	86.0	0.83	lhr
4.74	3.82	3.25	2.76	2.35	1.91	1.62	1.32	1.12	2hr
6.83	5.40	4.53	3.79	3.16	2.50	2.09	1.65	1.38	3hr
8.51	6.73	5.64	4.72	3.94	3.12	2.60	2.06	1.72	6hr
10.37	8.22	06.9	5.79	4.85	3.85	3.23	2.57	2.13	12hr
12.46	9.92	8.35	7.03	5.92	4.73	3.99	3.19	2.65	24hr
14.75	11.60	9.69	8.10	6.77	5.35	4.48	3.54	2.94	48hr
$500 \mathrm{yr}$	$200 \mathrm{yr}$	$100 \mathrm{yr}$	50yr	25yr	10yr	5yr	2уг	lyr	
11.03	8.78	7.39	6.22	5.24	4.19	3.53	2.82	2.34	lday
14.18	11.16	9.32	7.79	6.51	5.14	4.31	3.41	2.83	2day
16.32	12.85	10.73	8.96	7.49	5.91	4.95	3.91	3.26	4day
18.02	14.37	12.12	10.22	8.62	6.89	5.81	4.65	3.95	7day
19.31	15.55	13.20	11.21	9.52	7.68	6.53	5.27	4.54	10day
500yr	$200 \mathrm{yr}$	100yr	50yr	25уг	10yr	5yr	2уг	lyr	

Lower Confidence Limits

500 yr	$200 \mathrm{yr}$	$100 \mathrm{yr}$	50 yr	25yr	10 yr	5yr	$2 \mathrm{yr}$	1yr	
59.0	0.55	0.52	0.49	0.46	0.42	65.0	0.35	0.25	5min
76.0	0.83	0.78	0.74	0.70	0.65	0.60	0.54	0.38	10min
1.25	1.05	86.0	0.92	0.88	0.80	0.74	0.66	0.46	15min
1.81	1.52	1.42	1.33	1.25	1.12	1.02	0.89	0.62	30min
2.57	2.12	1.94	1.79	1.65	1.45	1.30	1.10	0.76	60min
3.32	2.82	2.51	2.23	1.98	1.71	1.55	1.29	1.04	120min
$500 \mathrm{yr}$	$200 \mathrm{yr}$	$100 \mathrm{yr}$	$50 \mathrm{yr}$	25 yr	10 yr	5yr	$2 \mathrm{yr}$	1yr	
2.22	1.83	1.68	1.54	1.42	1.25	1.12	0.95	0.66	lhr
3.25	2.76	2.45	2.18	1.94	1.67	1.52	1.26	1.02	2hr
3.80	3.23	2.87	2.54	2.25	1.93	1.72	1.48	1.15	3hr
4.77	4.08	3.63	3.24	2.89	2.50	2.23	1.93	1.44	6hr
5.83	5.04	4.52	4.05	3.63	3.17	2.85	2.45	1.81	12hr
89.6	7.94	6.86	5.92	5.14	4.27	3.71	3.10	2.23	24hr
11.46	9.25	7.92	6.80	5.86	4.83	4.16	3.44	2.53	48hr
500 yr	$200 \mathrm{yr}$	$100 \mathrm{yr}$	$50 \mathrm{yr}$	25 yr	$10 \mathrm{yr}$	5yr	$2 \mathrm{yr}$	1yr	
8.56	7.03	6.07	5.24	4.55	3.78	3.29	2.74	1.97	lday
11.02	8.90	7.62	6.53	5.63	4.64	4.00	3.31	2.43	2day
12.55	10.18	8.72	7.51	6.46	5.32	4.62	3.79	2.97	4day
13.36	11.07	9.61	8.37	7.29	6.10	5.34	4.49	3.29	7day
14.31	11.98	10.50	9.21	8.10	6.84	6.03	5.11	3.95	10day
$500 \mathrm{yr}$	$200 \mathrm{yr}$	$100 \mathrm{yr}$	$50 \mathrm{yr}$	25yr	$10 \mathrm{yr}$	5yr	$2 \mathrm{yr}$	1yr	

Upper Confidence Limits

50	20	10	y,	2	1	UN .	2		
)0yr	0yr	0yr	0yr	5yr	0yr	yr	yr	yr	
1.53	1.14	0.96	0.80	0.68	0.54	0.46	0.38	0.34	5min
2.28	1.72	1.45	1.22	1.03	0.83	0.71	0.59	0.53	10min
2.94	2.18	1.81	1.52	1.28	1.02	0.88	0.73	0.65	15min
4.27	3.16	2.62	2.18	1.83	1.43	1.21	0.99	0.87	30min
6.07	4.41	3.59	2.93	2.40	1.85	1.53	1.22	1.07	60min
6.35	4.92	4.06	3.35	2.76	2.14	1.76	1.39	1.24	120min
$500 \mathrm{yr}$	$200 \mathrm{yr}$	$100 \mathrm{yr}$	$50 \mathrm{yr}$	25yr	$10 \mathrm{yr}$	5yr	$2 \mathrm{yr}$	1yr	
5.23	3.80	3.10	2.53	2.07	1.59	1.32	1.05	0.93	lhr
6.21	4.81	3.97	3.28	2.70	2.09	1.72	1.36	1.21	2hr
7.59	5.84	4.79	3.93	3.22	2.47	2.03	1.57	1.40	3hr
9.59	7.41	6.11	5.03	4.15	3.20	2.63	2.04	1.86	6hr
85.01	8.37	7.00	5.86	4.91	3.89	3.26	2.63	2.42	12hr
15.76	12.19	10.02	8.22	6.76	5.21	4.28	3.30	2.93	24hr
17.82	13.73	11.27	9.25	7.59	5.83	4.79	3.69	3.24	48hr
$500 \mathrm{yr}$	$200 \mathrm{yr}$	$100 \mathrm{yr}$	50 yr	25yr	10 yr	$5 \mathrm{yr}$	$2 \mathrm{yr}$	1yr	
13.95	10.79	8.87	7.28	5.98	4.61	3.79	2.92	2.59	lday
17.14	13.20	10.84	8.90	7.30	5.61	4.61	3.55	3.11	2day
20.39	15.63	12.79	10.46	8.54	6.51	5.31	4.08	3.55	4day
24.17	18.57	15.20	12.44	10.16	7.77	6.34	4.84	4.31	7day
25.61	19.84	16.36	13.48	11.11	8.59	7.07	5.49	4.93	10day
500yı	200 yr	$100 \mathrm{yr}$	$50 \mathrm{yr}$	25 yr	$10 \mathrm{yr}$	5yr	$2 \mathrm{yr}$	$1 \mathrm{yr}$	

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Electronically stamped by Michael Andrade, PE: 10/02/23

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

\boxtimes	Static
-------------	--------

Dynamic Field¹

 \boxtimes Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Sta	indard 4: Water Quality (continued)
\square	The BMP is sized (and calculations provided) based on:
	The ½" or 1" Water Quality Volume or
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	Indard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	Indard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.

Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

	Limited	Pro	ject
--	---------	-----	------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

APPENDIX B

HYDROCAD REPORTS PRE-DEVELOPMENT

Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
6,755	74	>75% Grass cover, Good, HSG C (10S)
6,755	/4	IOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
6,755	HSG C	10S
0	HSG D	
0	Other	
6,755		TOTAL AREA

23101_Pre-Development		
Prepared by Graves Engineering, Inc	Printed	10/6/2023
HydroCAD® 10.20-3c s/n 00448 © 2023 HydroCAD Software Solutions LLC		Page 4

		Ground	Covers (all no	Dues)			
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Su
 (sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Nu
0	0	6,755	0	0	6,755	>75% Grass	
						cover, Good	
0	0	6,755	0	0	6,755	TOTAL AREA	

Ground Covers (all nodes)

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 10S: Area to Design Point Runoff Area=6,755 sf 0.00% Impervious Runoff Depth>1.03" Tc=6.0 min CN=74 Runoff=0.17 cfs 579 cf

Reach 1R: Design Point 1

Inflow=0.17 cfs 579 cf Outflow=0.17 cfs 579 cf

Total Runoff Area = 6,755 sf Runoff Volume = 579 cf Average Runoff Depth = 1.03" 100.00% Pervious = 6,755 sf 0.00% Impervious = 0 sf

Summary for Subcatchment 10S: Area to Design Point

Runoff = 0.17 cfs @ 12.14 hrs, Volume= Routed to Reach 1R : Design Point 1 579 cf, Depth> 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-YEAR Rainfall=3.19"

Area (sf) CN Description	
6,755 74 >75% Grass cover, Good, HSG C	
6,755 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Subcatchment 10S: Area to Design Point	
Hydrograph	
0.18	noff
2-YEAR Rainfall=3.19''	
0.13 Runoff Area=6 755 sf	
$\mathbf{\hat{s}}_{0,0}^{0.1}$ Runoff Depth>1.03"	
0.06 CN=74	
0.04	
0.02	
0.01	
Time (hours)	

Summary for Reach 1R: Design Point 1

Inflow A	Area =	=	6,755 sf,	, 0.00% Ir	npervious,	Inflow Depth >	1.03	8" for 2-	YEAR event
Inflow	=		0.17 cfs @	12.14 hrs,	Volume=	579	cf		
Outflow	/ =		0.17 cfs @	12.14 hrs,	Volume=	579	cf, At	ten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Reach 1R: Design Point 1

NRCC 24-hr D 10-YEAR Rainfall=4.73" Printed 10/6/2023 ions LLC Page 1

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 10S: Area to Design Point Runoff Area=6,755 sf 0.00% Impervious Runoff Depth>2.15" Tc=6.0 min CN=74 Runoff=0.36 cfs 1,209 cf

Reach 1R: Design Point 1

Inflow=0.36 cfs 1,209 cf Outflow=0.36 cfs 1,209 cf

Total Runoff Area = 6,755 sf Runoff Volume = 1,209 cf Average Runoff Depth = 2.15" 100.00% Pervious = 6,755 sf 0.00% Impervious = 0 sf

Subcatchment 10S: Area to Design Point

Reach 1R: Design Point 1

NRCC 24-hr D 25-YEAR Rainfall=5.92" Printed 10/6/2023 ions LLC Page 3

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 10S: Area to Design Point Runoff Area=6,755 sf 0.00% Impervious Runoff Depth>3.11" Tc=6.0 min CN=74 Runoff=0.52 cfs 1,752 cf

Reach 1R: Design Point 1

Inflow=0.52 cfs 1,752 cf Outflow=0.52 cfs 1,752 cf

Total Runoff Area = 6,755 sf Runoff Volume = 1,752 cf Average Runoff Depth = 3.11" 100.00% Pervious = 6,755 sf 0.00% Impervious = 0 sf

Subcatchment 10S: Area to Design Point

Reach 1R: Design Point 1

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 10S: Area to Design Point Runoff Area=6,755 sf 0.00% Impervious Runoff Depth>5.23" Tc=6.0 min CN=74 Runoff=0.86 cfs 2,945 cf

Reach 1R: Design Point 1

Inflow=0.86 cfs 2,945 cf Outflow=0.86 cfs 2,945 cf

Total Runoff Area = 6,755 sf Runoff Volume = 2,945 cf Average Runoff Depth = 5.23" 100.00% Pervious = 6,755 sf 0.00% Impervious = 0 sf

Subcatchment 10S: Area to Design Point

Reach 1R: Design Point 1

APPENDIX C

HYDROCAD REPORTS POST-DEVELOPMENT

Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
4,765	74	>75% Grass cover, Good, HSG C (101S)
1,990	98	Paved parking, HSG C (100S)
6,755	81	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
6,755	HSG C	100S, 101S
0	HSG D	
0	Other	
6,755		TOTAL AREA

23101	Post-Development	

Prepared by Graves Engineering, Inc							
Hyo	lroCAD®	10.20-3c	s/n 00448	© 2023 HydroCAD	Software Solutions LLC		

Printed 10/6/2023 Page 4

HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Su Nu
 0	0	4,765	0	0	4,765	>75% Grass	
0	0	1 000	0	0	1 990	cover, Good Paved parking	
0	0	6,755	0	0	6,755	TOTAL AREA	

Ground Covers (all nodes)

23101_Post-Development Prepared by Graves Engineering, Inc	NRCC 24-hr D 2-YEAR Rainfall=3.19" Printed 10/6/2023
HydroCAD® 10.20-3c s/n 00448 © 2023 Hydro	CAD Software Solutions LLC Page 5
Time span=0.00 Runoff by SCS TR Reach routing by Stor-Ind+Tr	-24.00 hrs, dt=0.05 hrs, 481 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment 100S: Area to Basin	Runoff Area=1,990 sf 100.00% Impervious Runoff Depth>2.95" Tc=6.0 min CN=98 Runoff=0.13 cfs 490 cf
Subcatchment 101S: Undetained Area to	Runoff Area=4,765 sf 0.00% Impervious Runoff Depth>1.03" Tc=6.0 min CN=74 Runoff=0.12 cfs 409 cf

Reach 1R: Design Point 1

Inflow=0.12 cfs 572 cf Outflow=0.12 cfs 572 cf

Pond 1P: Infiltration BasinPeak Elev=540.72' Storage=219 cfInflow=0.13 cfs490 cfDiscarded=0.00 cfs154 cfPrimary=0.03 cfs163 cfSecondary=0.00 cfs0 cfOutflow=0.04 cfs317 cf

Total Runoff Area = 6,755 sf Runoff Volume = 898 cfAverage Runoff Depth = 1.60"70.54% Pervious = 4,765 sf29.46% Impervious = 1,990 sf

Summary for Subcatchment 100S: Area to Basin

Runoff = 0.13 cfs @ 12.13 hrs, Volume= Routed to Pond 1P : Infiltration Basin 490 cf, Depth> 2.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-YEAR Rainfall=3.19"

Summary for Subcatchment 101S: Undetained Area to Design Point

0.12 cfs @ 12.14 hrs, Volume= Runoff = Routed to Reach 1R : Design Point 1

409 cf, Depth> 1.03"

Page 7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-YEAR Rainfall=3.19"

Alea (SI)	CN	Description					
4,765	74	>75% Grass	s cover, Go	ood, HSG C			
4,765		100.00% Pe	ervious Are	a			
Tc Length (min) (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description			
6.0				Direct Entry.			
				j ,			
	Sut	catchmen	nt 101S: U Hydro	Indetained A	rea to Desig	n Point	

Summary for Reach 1R: Design Point 1

Inflow Ar	rea =	6,755 sf,	29.46% Impe	ervious,	Inflow Depth >	1.02"	for 2-	YEAR event
Inflow	=	0.12 cfs @	12.15 hrs, Vo	lume=	572 c	f		
Outflow	=	0.12 cfs @	12.15 hrs, Vo	lume=	572 c	f, Atter	ו= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Reach 1R: Design Point 1

Summary for Pond 1P: Infiltration Basin

Inflow Area = 1,990 sf,100.00		100.00% In	npervious,	Inflow Depth >	2.95"	for 2-	YEAR e	vent		
Inflow	=	0.13	cfs @	12.13 hrs,	Volume=	490 cf				
Outflow	=	0.04	cfs @	12.34 hrs,	Volume=	317 cf	, Atten=	72%	, Lag= 1	2.7 min
Discarded	=	0.00	cfs @	12.34 hrs,	Volume=	154 cf			-	
Primary	=	0.03	cfs @	12.34 hrs,	Volume=	163 cf				
Routed	to Reac	h 1R :	Desigr	n Point 1						
Secondary	=	0.00	cfs @	0.00 hrs,	Volume=	0 cf				
Routed	to Reac	h 1R :	Desigr	n Point 1						
Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs										
Peak Elev=	540.72	'@12	2.34 hrs	Surf.Area	a= 408 sf	Storage= 219 cf				
Flood Elev:	= 542.00)' [–] Su	rf.Area=	= 833 sf S ⁱ	torage= 1.0)06 cf				

Plug-Flow detention time= 223.1 min calculated for 317 cf (65% of inflow) Center-of-Mass det. time= 96.1 min (855.9 - 759.8)

Volume	Invert	Avail.Stor	age Storage	Description		
#1	540.00'	1,00	6 cf Custom	Stage Data (Pr	ismatic) Listed below (F	Recalc)
Elevatio (fee	on Su et)	rf.Area (sɑ-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
540.0)0)0	201	0	0		
542.0	00	833	661	1,006		
Device	Routing	Invert	Outlet Device	S		
#1 #2	Discarded Primary	540.00' 540.60'	0.270 in/hr E 6.0" Round L= 20.0' CP Inlet / Outlet I n= 0.010. Flo	xfiltration over S Outlet Culvert P, projecting, no nvert= 540.60' / ow Area= 0.20 st	Surface area headwall, Ke= 0.900 540.00' S= 0.0300 '/'	Cc= 0.900
#3	Secondary	541.00'	10.0' long x Head (feet) 0 2.50 3.00 3. Coef. (English 2.72 2.81 2.	3.0' breadth Bro 0.20 0.40 0.60 50 4.00 4.50 n) 2.44 2.58 2. 92 2.97 3.07 3	0.80 1.00 1.20 1.40 1 68 2.67 2.65 2.64 2.6 .32	ar Weir .60 1.80 2.00 4 2.68 2.68
Discard	ed OutFlow	Max=0.00 cfs	s @ 12.34 hrs	HW=540.72' (Free Discharge)	

1=Exfiltration (Exfiltration Controls 0.00 cfs)

Primary OutFlow Max=0.03 cfs @ 12.34 hrs HW=540.72' (Free Discharge) 2=Outlet Culvert (Inlet Controls 0.03 cfs @ 0.93 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=540.00' (Free Discharge) —3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Infiltration Basin

23101_Post-Development	NRCC 24-hr D	10-YEAR Rain	nfall=4.73"
Prepared by Graves Engineering, Inc		Printed	10/6/2023
HydroCAD® 10.20-3c s/n 00448 © 2023 HydroCAD Software Set	olutions LLC		Page 1

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 100S: Area to Basin	Runoff Area=1,990 sf 100.00% Impervious Runoff Depth>4.49"
	Tc=6.0 min CN=98 Runoff=0.19 cfs 744 cf
Subcatchment 101S: Undetained Area to	Runoff Area=4,765 sf 0.00% Impervious Runoff Depth>2.15"
	Tc=6.0 min CN=74 Runoff=0.25 cfs 853 cf
Reach 1R: Design Point 1	Inflow=0.36 cfs 1,252 cf
-	Outflow=0.36 cfs 1,252 cf
Pond 1P: Infiltration Basin	Peak Elev=540.84' Storage=271 cf Inflow=0.19 cfs 744 cf
Discarded=0.00 cfs 166 cf Primary=0.	.12 cfs 399 cf Secondary=0.00 cfs 0 cf Outflow=0.13 cfs 565 cf

Total Runoff Area = 6,755 sf Runoff Volume = 1,597 cf Average Runoff Depth = 2.84"70.54% Pervious = 4,765 sf29.46% Impervious = 1,990 sf

Subcatchment 100S: Area to Basin

Reach 1R: Design Point 1

23101_Post-Development	NRCC 24-hr D 25-YEAR Rainfall=5.92"
Prepared by Graves Engineering, Inc	Printed 10/6/2023
HydroCAD® 10.20-3c s/n 00448 © 2023 Hydro	DCAD Software Solutions LLC Page 4
Time span=0.00 Runoff by SCS TR Reach routing by Stor-Ind+Tr	-24.00 hrs, dt=0.05 hrs, 481 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment 100S: Area to Basin	Runoff Area=1,990 sf 100.00% Impervious Runoff Depth>5.68" Tc=6.0 min CN=98 Runoff=0.24 cfs 941 cf
Subcatchment 101S: Undetained Area to	Runoff Area=4,765 sf 0.00% Impervious Runoff Depth>3.11" Tc=6.0 min CN=74 Runoff=0.37 cfs 1,236 cf

Reach 1R: Design Point 1

Inflow=0.52 cfs 1,823 cf Outflow=0.52 cfs 1,823 cf

Pond 1P: Infiltration BasinPeak Elev=540.88' Storage=290 cf Inflow=0.24 cfs 941 cfDiscarded=0.00 cfs 173 cfPrimary=0.17 cfs 587 cfSecondary=0.00 cfs 0 cfOutflow=0.17 cfs 760 cf

Total Runoff Area = 6,755 sf Runoff Volume = 2,177 cf Average Runoff Depth = 3.87"70.54% Pervious = 4,765 sf29.46% Impervious = 1,990 sf

Subcatchment 100S: Area to Basin

Reach 1R: Design Point 1

Pond 1P: Infiltration Basin

23101_Post-Development	NRCC 24-hr D 100-YEAR Rainfall=8.35"
Prepared by Graves Engineering, Inc	Printed 10/6/2023
HydroCAD® 10.20-3c s/n 00448 © 2023 Hydro(CAD Software Solutions LLC Page 7
Time span=0.00-2 Runoff by SCS TR-2 Reach routing by Stor-Ind+Tra	24.00 hrs, dt=0.05 hrs, 481 points 20 method, UH=SCS, Weighted-CN ns method - Pond routing by Stor-Ind method
Subcatchment 100S: Area to Basin	Runoff Area=1,990 sf 100.00% Impervious Runoff Depth>8.10" Tc=6.0 min CN=98 Runoff=0.33 cfs 1,344 cf
Subcatchment 101S: Undetained Area to	Runoff Area=4,765 sf 0.00% Impervious Runoff Depth>5.23" Tc=6.0 min CN=74 Runoff=0.61 cfs 2,078 cf
Reach 1R: Design Point 1	Inflow=0.83 cfs 3,052 cf Outflow=0.83 cfs 3,052 cf
Pond 1P: Infiltration Basin Discarded=0.00 cfs 183 cf Primary=0.24	Peak Elev=540.96' Storage=324 cf Inflow=0.33 cfs 1,344 cf cfs 974 cf Secondary=0.00 cfs 0 cf Outflow=0.24 cfs 1,158 cf
Total Runoff Area = 6,755 s	f Runoff Volume = 3,421 cf Average Runoff Depth = 6.08" 70.54% Pervious = 4,765 sf 29.46% Impervious = 1,990 sf

Subcatchment 100S: Area to Basin

Reach 1R: Design Point 1

APPENDIX D

USDA-NRCS SITE SOILS MAP

Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
307B	Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony	С	3.0	20.5%
315B	Scituate fine sandy loam, 3 to 8 percent slopes	С	11.6	79.5%
Totals for Area of Intere	est	14.6	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

USDA

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX E

LONG-TERM DRAINAGE SYSTEM OPERATION & MAINTENANCE PLAN

LONG-TERM DRAINAGE SYSTEM OPERATION & MAINTENANCE PLAN

System

The additional drainage system associated with the site at Joshua Place is an open drainage system consisting of an infiltration basin.

Responsible Parties

The drainage system located on site property will be operated and maintained by the owner, Dudley Housing Authority post-construction. Drainage system maintenance tasks shall include routine cleaning of the overall drainage network and specific duties as listed below.

The responsible party must designate a "qualified personnel" to perform the inspections associated with this plan. This means a person knowledgeable of the layout and overall function of the stormwater system. As necessary, this "qualified personnel" shall employ the services of a registered professional engineer when inspections reveal a failing stormwater system component or when similar attention is needed beyond the knowledge or experience of the inspector.

Operation and Maintenance Duties

The following duties shall be considered the minimum required and may be supplemented by additional measures as necessary to maintain the function of the drainage system. This operation and maintenance plan shall serve as a supplement to any and all existing drainage system duties.

Sweeping:

Sweeping of the impervious areas, parking lots and driveways should be done at least 2 times annually, namely in the spring and fall. It is imperative that sweeping take place immediately following final winter snowmelt to remove winter sand. All sediments containing hydrocarbons shall be handled properly and disposed of in accordance with local, state and federal guidelines and regulations.

Infiltration Basin:

Infiltration basin maintenance begins with education of the function and purpose of the structure; namely that of stormwater management and treatment. It is imperative that sand used in winter conditions not be allowed to enter the infiltration basin as it will clog the soil media. Reduced sanding should be employed in the area draining to the infiltration basin and any accumulated sand should be removed immediately. Snow must not be stored in the infiltration basin. Deicing chemicals should not be used in the area draining to the infiltration basin.

Inspections should be performed monthly and/or after every rain event of more than 2 inches of rainfall in 24 hours; there should be no ponding water within the infiltration basin after 72 hours following a rainstorm. Inspect the infiltration basin for signs of erosion and repair immediately if found. Re-hydroseed void areas as needed. Monthly inspections must also include the following:

- Remove litter and debris.
- Treat diseased plantings as needed; prune and replace dead vegetation with like material.
- Remove invasive vegetation and weeds.
- Fertilize and apply pesticides if needed.

• Maintain all culverts, outlet structure, and piping free of debris and blockages.

Annual Budget

An annual budget for the operation and maintenance tasks describe above is estimated at \$1,000.

APPENDIX F

LONG-TERM POLLUTION PREVENTION PLAN

LONG-TERM POLLUTION PREVENTION PLAN

Pollution Prevention and Source Control Plan

The site lessee, Dudley Housing Authority, shall designate a pollution prevention team whose responsibilities are the following:

- <u>Good housekeeping</u>: General trash and litter cleanup of the site, inspect all vehicles on a regular basis for detention of leaking oil, gas and other fluids, provide routine visual inspections of potential pollution sources, maintain an inventory of potential pollution sources stored on site (i.e. paints, solvents, etc.). Initiate and maintain record keeping of activity with regard to the contents of this plan.
- <u>Storing materials and waste products inside or under cover</u>: All materials and waste products shall be stored within the building or within the covered dumpster.
- <u>Vehicle washing</u>: Vehicle washing is to be performed offsite.
- <u>Routine inspections and maintenance of stormwater BMP's</u>: Follow the requirements of the site *Long-Term Drainage System Operation & Maintenance Plan*. Be aware of site drainage components and Best Management Practices (BMP's) and their locations including the sediment forebay, bioretention area and riverfront restoration area.
- Spill prevention and response: In the event of a spill outside of the building, immediately initiate containment and cleanup procedures appropriate for the material including but not limited to sorbent media, towels and barriers, catch basin inlet seals, etc. as well as notifying the proper authorities. All attempts must be made to prevent spilled material from entering the drainage system or infiltrating into the ground.
- <u>Maintenance of lawns and landscaped areas</u>: Regularly mow lawn areas and weed landscaped areas.
- <u>Storage and use of fertilizers, herbicides, and pesticides</u>: All such materials shall be stored inside the proposed building(s). It is recommended not to store such materials in large quantities.

Dudley Housing Authority shall be responsible for training designated staff in the procedures described herein. Note that this Plan does not indemnify Dudley Housing Authority from the requirements of any local, state, or federal requirements of regulations regarding the storage or release of potentially hazardous materials.

Snow Management Plan

The goal of this plan is to employ proper management of snow and snow melt, in terms of snow removal and storage, use of de-icing compounds, and other practices that can prevent or minimize runoff pollutant loading impacts. The following measures shall be taken:

- <u>Use of de-icing compounds</u>:
 - Use alternative de-icing compounds such as calcium chloride (CaCl₂) and calcium magnesium acetate (CMA),
 - Reduce the use of de-icing compounds through better training and careful application.
- Storage of de-icing compounds:
 - Store compounds on sheltered (protected from precipitation and wind) impervious pads or in original shipment containers if possible.

- Snow removal and storage:
 - Place snow in designated area where it can slowly infiltrate however it should not be placed over any component of the site's stormwater management system nor the riverfront restoration area.

APPENDIX G

TSS REMOVAL CALCULATION WORKSHEET

Mass. Dept. of Environmental Protection

which enters the BMP

*Equals remaining load from previous BMP (E)

must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1 Non-automated TSS Calculation Sheet

Prepared By: occ Project: Joshua Place Date: 10/2/2023

> 80% **Outlet or BMP Train** be Completed for Each

Total TSS Removal =

Separate Form Needs to

TSS Removal **Calculation Worksheet** Infiltration Basin **BMP**¹ ω Location: To Design Point #1 (North) thru Infiltration Basin TSS Removal Rate¹ 0.00 0.00 0.00 0.00 0.80 ဂ Starting TSS Load* 0.20 0.20 0.20 0.20 1.00 Ο Removed (C*D) Amount 0.00 0.00 0.00 0.00 0.80 ш Load (D-E) Remaining 0.20 0.20 0.20 0.20 0.20 П

Version 1, Automated: Mar. 4, 2008

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed

20 Store UGE -543	Philip Ph
STORAGE & UCTUER	
PRE-DEVELOPMENT DRAINAGE AREAS	
DUDLEY HOUSING AUTHORITY, JOSHUA PLACE 667-1, EOHLC #080050	
PREPARED FOR: DUDLEY HOUSING AUTHORITY 22 JOSHUA PLACE, DUDLEY, MA 01571	1 10/11/23 MRA ISSUED FOR PERMITTING ENGINEERING, Inc.
DATE: 10/3/23 SCALE: 1"=10' DES. BY: OGC DRW. BY: OGC CHK. BY: MRA PRJ. NO.: 23101	NO. DATE BY DESCRIPTION 100 GROVE STREET WORCESTER MA 01605 T 508-856-0321 F 508-856-0357 gravesengineering.com

