Drainage Report

Nichols College Townhouses Center Road, Dudley, MA

CHA Project Number: 076491.000

Prepared for: Nichols College 121 Center Road Dudley, MA 01571

Prepared by:

101 East River Drive, 1st Floor East Hartford, CT 06108 Phone: (860) 885-1055 Fax: (860) 477-0506

May 23, 2022

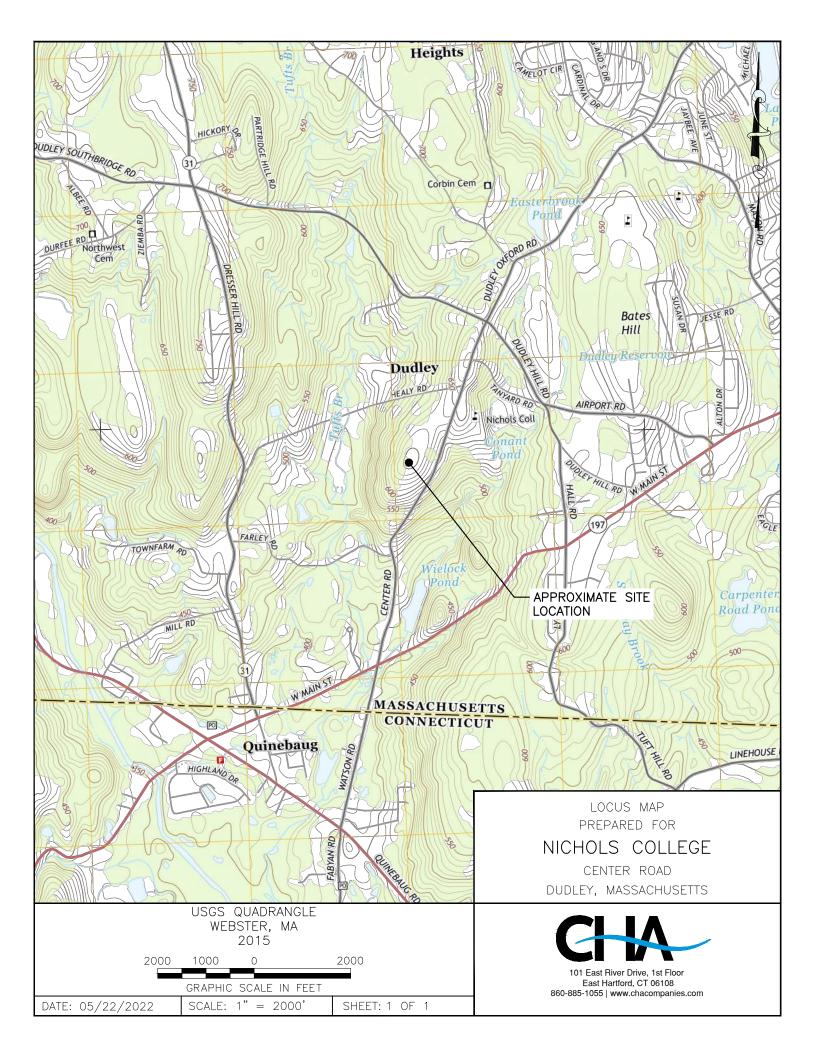


TABLE OF CONTENTS

- A. Locus & Summary
- B. Massachusetts Department of Environmental Protection Checklist for Stormwater Report
- C. Water Quality Volume, Recharge Volume, & TSS Removal Calculations
- D. Existing Conditions Drainage Calculations
- E. Proposed Conditions Drainage Calculations
- F. Design Plans (Includes Construction Period Pollution Prevention and Erosion & Sedimentation Control Plan and Post Construction Operation and Maintenance Plan)
- G. Soils Mapping
- H. Hydrologic Data

SUMMARY

Nichols College proposes to construct two $\pm 6,400$ square foot Townhouse style student residence buildings at the south end of their campus in Dudley. The proposed location is on the west side of Center Road, approximately 1,500-feet south of Healy Road. Storm flows from the existing site drain primarily to the East, to the existing Center Road Drainage System, and to the West towards Tufts Brook, along the center of the existing athletic field. Available USDA soils mapping (See Section G) indicates that soils in the proposed development area consist primarily of fine sandy loams with a hydrologic group of 'C'.

The proposed project will consist of two student residence buildings, underground utilities, associated parking and access driveways. Storm flows from the majority of the developed site will be collected by a series of catch basins and discharged through a hydrodynamic separator into a water quality basin on the east side of the site. This basin will discharge to the existing driveway drainage system which connects to the existing system in Center Road.

CHA utilized a computer model, HydroCAD®, to perform drainage calculations. The model used the Soil Conservation Service TR-20 method with NOAA 24-hour rainfall data to calculate the runoff. The design points for calculating the existing and proposed peak storm flows are the existing Drainage System in Center Road, the existing stormwater basin to the north, the western property line and the southern property line. Calculations for the 2, 10, 25, and 100-year storm events are provided. Peak storm flows for existing and proposed conditions are listed in Table 1-1.

Table 1-1. Existing & Proposed Peak Storm Flows

Table 1 1. Existing & 110 posed 1 can storm 1 lows								
Storm	To Cer	nter RD	To Ex	. Basin	To '	West	To S	South
Event	Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed
2 Year Storm	7.7 cfs	7.4 cfs	5.9 cfs	5.7 cfs	6.1 cfs	5.0 cfs	0.5 cfs	0.5 cfs
10 Year Storm	15.6 cfs	14.0 cfs	10.0 cfs	9.2 cfs	14.8 cfs	12.6 cfs	1.2 cfs	1.2 cfs
25 Year Storm	20.7 cfs	18.1 cfs	12.5 cfs	11.5 cfs	20.8 cfs	17.9 cfs	1.7 cfs	1.7 cfs
100 Year Storm	28.8 cfs	24.3 cfs	16.4 cfs	14.8 cfs	30.6 cfs	26.6 cfs	2.5 cfs	2.5 cfs

Peak Flows to all Design Points will be reduced or maintained through the 100-year storm event.

MASSACHUSETTS	DEPARTMENT	OF ENVIRON	MENTAL
PROTECTION CHE	CKLIST FOR S	TORMWATER	REPORT

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

	presented in the Stormwater Checklist is accurate and that the information presented in the Report accurately reflects conditions at the site as of the date of this permit application.
Registered	Professional Engineer Block and Signature
	Signature and Date
	Checklist
Project Typ redevelopm	ee: Is the application for new development, redevelopment, or a mix of new and ent?
New de	velopment
Redeve	lopment
☐ Mix of N	lew Development and Redevelopment

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
\boxtimes	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	☐ Credit 1
	☐ Credit 2
	☐ Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges
	No new untreated discharges
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 2: Peak Rate Attenuation Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm. Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm. Standard 3: Recharge Soil Analysis provided. Required Recharge Volume calculation provided. Required Recharge volume reduced through use of the LID site Design Credits. Sizing the infiltration, BMPs is based on the following method: Check the method used. ⊠ Static ☐ Simple Dynamic Dynamic Field¹ Runoff from all impervious areas at the site discharging to the infiltration BMP. Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume. Recharge BMPs have been sized to infiltrate the Required Recharge Volume. Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason: Site is comprised solely of C and D soils and/or bedrock at the land surface Solid Waste Landfill pursuant to 310 CMR 19.000 Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable. Calculations showing that the infiltration BMPs will drain in 72 hours are provided. Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	necklist (continued)
Sta	ndard 3: Recharge (continued)
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.
Sta	ndard 4: Water Quality
The	e Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
	A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
	is within the Zone II or Interim Wellhead Protection Area
	is near or to other critical areas
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	involves runoff from land uses with higher potential pollutant loads.
	The Required Water Quality Volume is reduced through use of the LID site Design Credits.

☐ Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist (continued)

Checklist for Stormwater Report

	(
Sta	ndard 4: Water Quality (continued)
	The BMP is sized (and calculations provided) based on:
	☐ The ½" or 1" Water Quality Volume or
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	ndard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

ent practicable
The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
☐ Limited Project
 ☐ Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. ☐ Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area ☐ Marina and/or boatyard provided the hull painting, service and maintenance areas are protected
from exposure to rain, snow, snow melt and runoff
☐ Bike Path and/or Foot Path
Redevelopment Project
Redevelopment portion of mix of new and redevelopment.
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued) The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted **before** land disturbance begins. ☐ The project is *not* covered by a NPDES Construction General Permit. The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins. Standard 9: Operation and Maintenance Plan ☐ The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information: Name of the stormwater management system owners; Party responsible for operation and maintenance; Schedule for implementation of routine and non-routine maintenance tasks: Plan showing the location of all stormwater BMPs maintenance access areas; Description and delineation of public safety features; Estimated operation and maintenance budget; and Operation and Maintenance Log Form. The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions: A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs; A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions. Standard 10: Prohibition of Illicit Discharges The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;

	An Illicit Discharge Compliance Statement is attached;
\boxtimes	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of

any stormwater to post-construction BMPs.

WATER QUALITY VOLUME, RECHARGE VOLUME, & TSS REMOVAL CALCULATIONS

Water Quality Flow

Project Name: Nichols Townhouses Project # 076491

Date: May 22,202

Following Guidelines From "Massachusetts Department of Environmental Protection Wetlands Program"

Hydrodynamic Separator 1

Water Quality Volume

WQV = 1" (I) / 12

Where:

WQV = Water Quality Volume (ac-ft)

I = Impervious Area (ac)

Areas From AutoCAD

	SQ. FT	Acres
Impervious	24,320	0.558
Pervious	54,870	1.260
Total (A)	79,190	1.818

WQV REQUIRED = 0.047 ac ft 2,027 cf

Determine Unit Peak Discharge

Ia / P = **0.034** (1" Runoff)

Read Unit Peak Discharge From Figure 4

qu = +/- **795**

Water Quality Flow

APP B

WQF = (qu) (A) (WQV)

Where:

qu = unit peak discharge (cfs/sqmi/in)

A = Drainage Area (sqmi)

WQV = Water Quality Volume (watershed inches)

WQF = **0.7** cfs

Prepared By: PMP

Massachusetts Department of Environmental Protection Wetlands Program

Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices

Effective October 15, 2013, computations following the standardized method must be submitted with a Wetlands Notice of Intent (NOI) when a proprietary manufactured stormwater treatment device sized using a flow rate is proposed in connection with work proposed in a wetland resource area or associated buffer zone. The computational method will primarily affect the sizing of the proprietary manufactured stormwater treatment separators, and not other types of stormwater treatment practices that are volume based (such as extended detention basins) or proprietary stormwater treatment filters sized using the Water Quality Volume (WQV).

Stormwater Standard No. 4 requires structural stormwater management practices to be sized to capture the required WQV in accordance with the Massachusetts Stormwater Handbook (310 CMR 10.05(6)(k)(4) and 314 CMR 9.06(6)(a)(4)). Stormwater Standard No. 4 requires that the full WQV be captured and treated to remove 80% of the Total Suspended Solid (TSS) load.

Since manufactured proprietary stormwater separators are sized using discharge rates and not volume, MassDEP is requiring the standardized method described below be used to convert the required WQV to a discharge rate (Q). No other methods are allowed to convert the WQV to the Q rate. This will ensure that flow rate based manufactured proprietary stormwater treatment practices are sized consistently from manufacturer to manufacturer. This section contains the following: caveats for method use, method description, examples of how to use the method, and documentation describing how the method was derived. This method will be incorporated into the Massachusetts Stormwater Handbook.

The following caveats apply to use of the method:

- Device sized using the Q rate must only be used as pretreatment practice.
- Device sized using this method shall be designed to be "offline", unless approved otherwise through
 written reciprocity granted by MassDEP to a final certification pursuant to the Technology
 Acceptance Reciprocity Partnership (TARP). This means the device must be sized at a minimum to
 fully treat the Q rate without any overflow, by-pass, surcharge of runoff, or scouring of sediments or
 oils previously trapped or entrained in the device.
- The computations described below must be provided in the Stormwater Report accompanying Wetlands Notice of Intent or application for 401 Water Quality Certification.
- MassDEP reserves ability to revise this method in the future as may be needed to reflect
 documented increases to precipitation intensity (Douglas 2011), updates to design intensity storms
 currently being considered by the National Weather Service or Northeast Climate Center (NECC)¹ to
 Technical Paper 40 (upon which this methodology is based), NRCS revisions to the WinTR55/TR20
 methods,² or changes to the National Pollution Discharge Elimination System (NPDES) permits
 issued by EPA for Massachusetts.

-

¹ On web, see precipitation intensities at http://precip.net

² On web, See MA-NRCS description at: http://www.nrcs.usda.gov/Internet/FSE DOCUMENTS/nrcs144p2 013763.pdf

METHOD

1. Determine if the WQV is the first ½-inch or 1-inch of runoff. If WQV is the first ½-inch, go to STEP 2. If WQV is the first 1-inch of runoff, go to STEP 7.

FOR FIRST ½ INCH RUNOFF WQV

2. Use Curve Number (CN) 98 to represent the runoff potential for impervious surfaces (see Method Derivation section below for explanation regarding how CN 98 was obtained).

Only use impervious surfaces for these computations. Runoff from pervious surfaces should not be included in the WQV computations for the Q rate. The WQV required by the Massachusetts Wetlands Protection (310 CMR 10.05(6)(k)(4)) and 401 Water Quality Certification (314 CMR 9.06(6)(a)(4)) regulations for Stormwater Standard No. 4 is based only on impervious surfaces.

- 3. Compute the time of concentration (tc) using the methods described in TR-55 1986, Chapter 3.
- 4. Refer to Figure 1, Ia/P Curve = 0.058
- 5. Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabular form so is preferred. Using the tc determined in STEP 3, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu is expressed in the following units: cfs/mi²/watershed inches (csm/in).
- 6. Compute Q rate using the following equation:

$$Q_{0.5} = (qu)(A)(WQV)$$

Where:

Q $_{0.5}$ = flow rate associated with first $\frac{1}{2}$ -inch of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (½ -inch in this case)

See Example 1, page 8 applying use of the method to convert first $\frac{1}{2}$ -inch WQV to minimum Q $_{0.5}$ rate.

Figure 1: For First ½-inch Runoff, Ia/P Curve = 0.058, Relationship Between Unit Peak Discharge and Time of Concentration for NRCS Type III Storm Distribution.

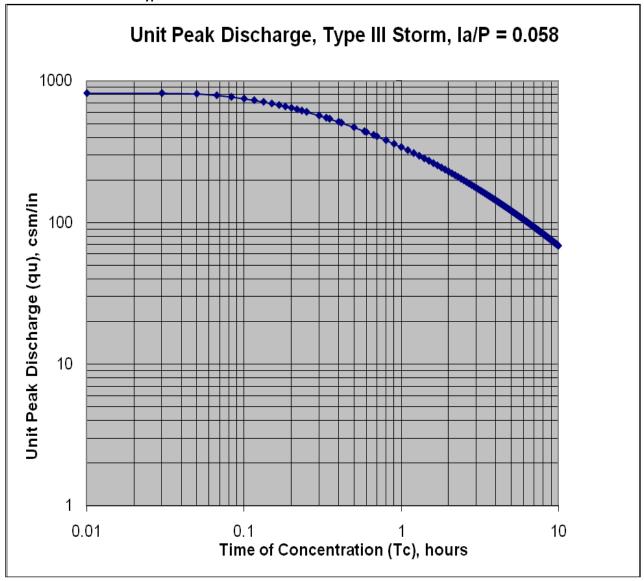


Figure 2: For First ½-inch of Runoff, Table of qu values for Ia/P Curve = 0.0.058, listed by tc, for Type III Storm Distribution

Distribution	1
Тс	qu
(Hours)	(csm/in)
0.01	821
0.03	821
0.05	813
0.067	794
0.083	773
0.1	752
0.116	733
0.133	713
0.15	694
0.167	677
0.183	662
0.2	646
0.217	632
0.233	619
0.25	606
0.3	572
0.333	552
0.35	542
0.4	516
0.416	508
0.5	472
0.583	443
0.6	437
0.667	417
0.7	408
0.8	383
0.9	361
1	342
1.1	325
1.2	311
1.3	297
1.4	285
1.5	274
1.6	264
1.7	254

Runoff, Table of qu val				
Тс	qu			
(Hours)	(csm/in)			
1.8	246			
1.9	238			
2	230			
2.1	223			
2.2	217			
2.3	211			
2.4	205			
2.5	200			
2.6	194			
2.7	190			
2.8	185			
2.9	181			
3	176			
3.1	173			
3.2	169			
3.3	165			
3.4	162			
3.5	158			
3.6	155			
3.7	152			
3.8	149			
3.9	147			
4	144			
4.1	141			
4.2	139			
4.3	136			
4.4	134			
4.5	132			
4.6	130			
4.7	128			
4.8	126			
4.9	124			
5	122			
5.1	120			
5.2	118			

Тс	qu				
(Hours)	(csm/in)				
5.3	116				
5.4	115				
5.5	113				
5.6	112				
5.7	110				
5.8	109				
5.9	107				
6	106				
6.1	104				
6.2	103				
6.3	102				
6.4	100				
6.5	99				
6.6	98				
6.7	97				
6.8	96				
6.9	94				
7	93				
7.1	92				
7.2	91				
7.3	90				
7.4	89				
7.5	88				
7.6	87				
7.7	86				
7.8	85				
7.9	84				
8	84				
8.1	83				
8.2	82				
8.3	81				
8.4	80				
8.5	79				
8.6	79				
8.7	78				

Тс	qu				
(Hours)	(csm/in)				
8.8	77				
8.9	76				
9	76				
9.1	75				
9.2	74				
9.3	74				
9.4	73				
9.5	72				
9.6	72				
9.7	71				
9.8	70				
9.9	70				
10	69				

FOR FIRST 1-INCH RUNOFF WQV

7. Use Curve Number (CN) 98 to represent the runoff potential for impervious surfaces (see Method Derivation section below for explanation regarding how CN 98 was obtained).

Only use impervious surfaces for these computations. Runoff from pervious surfaces should not be included in the WQV computations for peak WQF. The WQV required by the Massachusetts Wetlands Protection (310 CMR 10.05(6)(k)(4)) and 401 Water Quality Certification (314 CMR 9.06(6)(a)(4)) regulations for Stormwater Standard No. 4 is based only on impervious surfaces.

- 8. Compute the time of concentration (tc) using the methods described in TR-55 1986, Chapter 3.
- 9. Refer to Ia/P Curve = 0.034 (Figure 3)
- 10. Determine unit peak discharge using Figure 3 or 4. Figure 4 is in tabular form so is preferred. Using the tc determined in STEP 8, read the unit peak discharge (qu) from Figure 2 or from Table in Figure 4. qu is expressed in the following units: cfs/mi²/watershed inches (csm/in).
- 11. Compute the water quality flow (WQF) using the following equation:

$$Q_1 = (qu)(A)(WQV)$$

Where:

Q₁ = peak flow rate associated with first 1-inch of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1.0-inches in this case)

See Example 2, page 8 applying use of the method to convert first 1-inch WQV to minimum Q₁ rate.

Figure 3: For First 1-inch Runoff, Ia/P Curve = 0.034, Relationship Between Unit Peak Discharge and Time of Concentration for NRCS Type III Storm Distribution

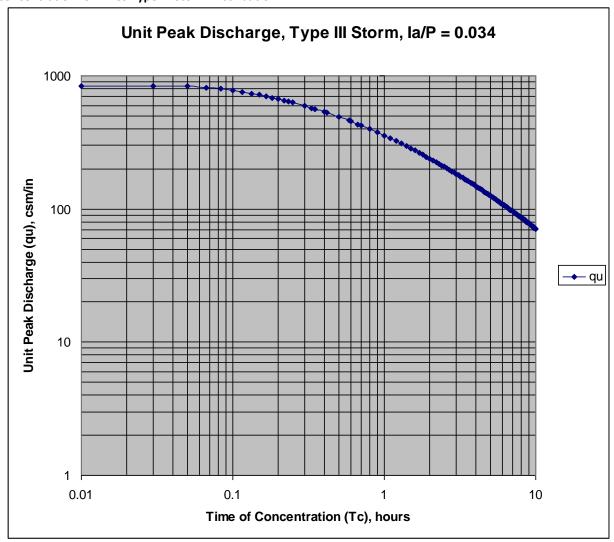


Figure 4: for First 1-inch Runoff, Table of qu values for Ia/P Curve = 0.034, listed by tc, for Type III Storm Distribution

110							
Тс	qu		Тс	qu		Tc	qu
(Hours)	(csm/in)	(H	ours)	(csm/in)		(Hours)	(csm/in)
0.01	835		2.7	197		7.1	95
0.03	835		2.8	192		7.2	94
0.05	831		2.9	187		7.3	93
0.067	814		3	183		7.4	92
0.083	795		3.1	179		7.5	91
0.1	774		3.2	175		7.6	90
0.116	755		3.3	171		7.7	89
0.133	736		3.4	168		7.8	88
0.15	717		3.5	164		7.9	87
0.167	700		3.6	161		8	86
0.183	685		3.7	158		8.1	85
0.2	669		3.8	155		8.2	84
0.217	654		3.9	152		8.3	84
0.233	641		4	149		8.4	83
0.25	628		4.1	146		8.5	82
0.3	593		4.2	144		8.6	81
0.333	572		4.3	141		8.7	80
0.35	563		4.4	139		8.8	79
0.4	536		4.5	137		8.9	79
0.416	528		4.6	134		9	78
0.5	491		4.7	132		9.1	77
0.583	460		4.8	130		9.2	76
0.6	454		4.9	128		9.3	76
0.667	433		5	126		9.4	75
0.7	424		5.1	124		9.5	74
0.8	398		5.2	122		9.6	74
0.9	376		5.3	120		9.7	73
1	356		5.4	119		9.8	72
1.1	339		5.5	117		9.9	72
1.2	323		5.6	115		10	71
1.3	309		5.7	114			
1.4	296		5.8	112			
1.5	285		5.9	111			
1.6	274		6	109			
1.7	264		6.1	108			
1.8	255		6.2	106			
1.9	247		6.3	105			
2	239		6.4	104			
2.1	232		6.5	102			
2.2	225		6.6	101			
2.3	219		6.7	100			
2.4	213		6.8	99			
2.5	207		6.9	98			
2.6	202		7	96			
	2.1 2.2 2.3 2.4 2.5	2.1 232 2.2 225 2.3 219 2.4 213 2.5 207	2.1 232 2.2 225 2.3 219 2.4 213 2.5 207	2.1 232 2.2 225 2.3 219 2.4 213 2.5 207 6.5 6.6 6.7 6.8 6.9	2.1 232 2.2 225 2.3 219 2.4 213 2.5 207 6.5 102 6.6 101 6.7 100 6.8 99 98	2.1 232 2.2 225 2.3 219 2.4 213 2.5 207 6.5 102 6.6 101 6.7 100 6.8 99 98	2.1 232 2.2 225 2.3 219 2.4 213 2.5 207 6.5 102 6.6 101 6.7 100 6.8 99 98

Examples

Example 1: 2.28-acre asphalt parking lot (impervious surface), with time of concentration equal to 0.25 hours. The proposed parking lot drains to a wetland resource area, which is not a critical area, nor is the site located "near" a critical area. A proprietary separator is proposed to pretreat runoff to be directed to an Extended Detention Basin.

Because site does not drain to or located near a critical area, WQV = ½ -inch

1-acre = 0.0015625 mi^2

Step 1: Use CN = 98 to represent the 2.28-acre impervious surface.

Step 2: Determine to

tc = 0.25 hours (given).

Step 3: Determine qu using Figure 2

With tc = 0.25 hours, qu is determined to be 606 csm/inch using Table in Figure 2.

Step 4 (Final Step): Determine Q 0.5

 $Q_{0.5} = (qu)(A)(WQV)$

 $Q_{0.5} = (606 \text{ csm/in})(2.28 - \text{acre})(0.0015625 \text{ mi}^2/\text{acre})(\frac{1}{2} - \text{inch})$

Q $_{0.5} \approx 1.1 \; \text{CFS}$

Example 2: One-acre site composed entirely of impervious surfaces, with time of concentration equal to 6 minutes. The proposed impervious surfaces are to be drained to a stream located in Zone II of a public drinking water supply. A proprietary separator is proposed to pretreat runoff to be directed to an Infiltration Basin.

Because site drains to a critical area, WQV = 1-inch

1-acre = 0.0015625 mi^2

Step 1: Use CN = 98 to represent the 1-acre impervious surface.

Step 2: Determine to

tc = 6 minutes (given).

Convert minutes to hours

tc = (6 minutes) / (60 minutes/hr) = 0.1 hours

Step 3: Determine qu using Table in Figure 4

Using the tc column, read down to find tc = 0.1 hours. Read to the right of tc = 0.1 hours to find the qu value which is 774 csm/inch.

Alternatively, you may use Figure 3 (Ia/P curve = 0.034). Find tc = 0.1 hours, read up to the Ia/P curve, then follow intersecting line to the left to interpolate the qu value. You'll note that using Figure 4 is quicker in so far as no interpolation is required. In cases where the tc is not listed in Figure 4, you may need to use Figure 3. In such instances, Figure 4 may still assist you in bracketing the qu values to interpolate.

Step 4 (Final Step): Determine Q 1

 $Q_1 = (qu)(A)(WQV)$

 $Q_1 = (774 \text{ csm/in})(1-\text{acre})(0.0015625 \text{ mi}^2/\text{acre})(1-\text{inch})$

Q $_1 \approx 1.2 \text{ CFS}$

If the conversion factor to convert acres to square miles is not included, the result will not be correct. As different units are used in the computations, double check your units to ensure the result is correct.

Method Derivation

The Stormwater Advisory Committee convened to assist MassDEP with the 2008 stormwater revisions to the Wetlands and 401 Water Quality Certification regulations. The Advisory Committee tabled a method proposed at that time and asked its Proprietary BMP subcommittee to study the issue further. Subsequently, the Proprietary BMP subcommittee met from 2008 to 2011, examining multiple methods. Among the methods reviewed included the Rational Method used by New Jersey DEP, Ahlfeld et al 2004, Winkler et al 2001, Claytor and Scheuler 1996, Imbrium PCSWMM, and Bryant. The Ahlfeld and Winkler methods were funded by MassDEP through 319 funds and developed using Massachusetts precipitation data. The Claytor method is based on SCS TR-55 graphical methods. The PCSWMM method is a proprietary version of the EPA SWMM method, based on Mannings equation. The Bryant method was based on precipitation data compiled in the Ahlfeld and Winkler methods.

To assist in selecting a method, Rees and Schoen 2009 conducted third party review of the different approaches. Rees and Schoen found that the various methods produced different peak rate flows.

Differences were also found between peak flow rates in coastal and inland areas. With some methods, the precipitation intensity associated with the ½-inch water quality volume produced a greater flow rate than the 1-inch water quality volume. The study concluded that the Claytor and Schueler 1996 method was the most complete in attempting to transform the Water Quality Volume to a flow rate.

Subsequent to the study, flow rate results from the Claytor and Schueler method were adapted for use in Massachusetts using both the first ½ - inch and 1-inch Water Quality Volumes. Flow rates were found to bypass a portion of the Water Quality Volume for the both the first ½ -inch and 1-inch of runoff depending on drainage area and treatment device size. As bypassed runoff is not treated, the Proprietary BMP Subcommittee agreed on meeting held in March 2011 that practices sized using the flow conversion method must be restricted to pretreatment only and directed to stormwater treatment practices. The Proprietary BMP Subcommittee subsequently recommended the Claytor and Schueler 1996 method be used, as adapted for use in Massachusetts, to the Stormwater Advisory Committee in May 2011.

The Claytor and Schueler 1996 approach in part utilizes the U.S. Natural Resource and Conservation Service Technical Release 55 (TR-55) Graphical Peak Discharge Method (NRCS / SCS 1986), adapted for small storm hydrology (Pitt 1999). It was adapted for use in Massachusetts by determining the precipitation values that generate the first ½ -inch and 1-inch of runoff, using the NRCS / SCS 1986 equations as described below.

- 1. The Massachusetts Stormwater Standard No. 4 sets the required WQV equal to 0.5-inch or 1.0- inch, depending if the discharge is to or near a critical area, Land Use with Higher Potential Pollutant Load (LUHPPL), or soil with rapid infiltration rate.
- 2. The Claytor and Scheuler 1996 method requires a Curve Number (CN) be determined to represent the ability of a surface to effectively convey runoff. CN 98 was derived for impervious surfaces using small storm hydrology using the following equation (NRCS / SCS 1986). The precipitation depth associated with the first 1.0-inch of runoff is 1.2 watershed inches based on Figure 4 (NRCS 1986 Table 2-1) and Figure 5 (NRCS 1986 Figure 2-1). The precipitation depth associated with the first ½ inch of runoff is 0.7 watershed inches.

½-inch WQV Derivation:

Solve for Pt

$$CN = \frac{1000}{10 + 5P_t + 10Q_{WQV} - 10(Q_{WQV}^2 + 1.25Q_{WQV}P_t)^{0.5}}$$

Where:

CN = Runoff Curve Number = 98 for runoff impervious surfaces

P_t = Precipitation depth

Q_{WQV} = Runoff depth related to Water Quality Volume = 0.5 watershed inches

This equation produces the result $P_t = 0.7$ inches, when CN = 98 and $Q_{WOV} = 0.5$ inches.

1-inch WQV Derivation

$$CN = \frac{1000}{10 + 5P_t + 10Q_{WOV} - 10(Q_{WOV}^2 + 1.25Q_{WOV}P_t)^{0.5}}$$

Where:

CN = Runoff Curve Number = 98 for runoff from impervious surfaces

P_t = Precipitation depth

Q_{WQV} = Runoff depth related to Water Quality Volume = 1.0 watershed inches

This equation produces the result $P_t = 1.2$ inches, when CN = 98 and $Q_{WQV} = 1.0$ inches

3. Potential maximum retention (S) in inches was derived using the following equation (NRCS 1986):

½-inch WQV Derivation / 1-inch WQV Derivation (result same for both):

$$S = (1000/CN) - 10$$

This equation produces the result S = 0.204 when the CN = 98

4. The initial abstraction (Ia) was derived using the following equation (NRCS 1986):

½-inch WQV Derivation / 1-inch WQV Derivation (result same for both):

$$Ia = 0.2S$$

This equation produces the result Ia = 0.041, when S = 0.204

Also See Figure 6 (NRCS 1986, Table 4-1), where Ia = 0.041, for CN = 98

5. The Ia/P Ratio was derived using the following equation (NRCS 1986):

½-inch WQV Derivation

Solve for Ia/P Ratio using the following equation (NRCS 1986):

$$Ia/P$$
 Ratio = Ia/P_t

Where:

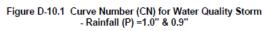
Ia = 0.041 (for CN = 98)

 $P_t = 0.7$ watershed inches

$$Ia/P$$
 Ratio = 0.041/0.7 = 0.058

Ia/P Ratio = Ia/P_t

Where:


Ia = 0.041 (for CN = 98)

P_t = 1.2 watershed inches

Ia/P Ratio = 0.041/ 1.2 = 0.034

- 6. For the first $\frac{1}{2}$ -inch runoff, Ia/P curve for 0.058 ratio (Figure 1) and corresponding table (Figure 2) were generated using coefficients C_0 , C_1 and C_2 derived from regression of coefficients published in Appendix F in NRCS / SCS TR-55 1986.
- 7. For the first 1-inch runoff, Ia/P curve for 0.034 ratio (Figure 3) and corresponding table (Figure 4) were generated using coefficients C_0 , C_1 and C_2 derived from regression of coefficients published in Appendix F in NRCS / SCS TR-55 1986.

Figures Used for Method Derivation

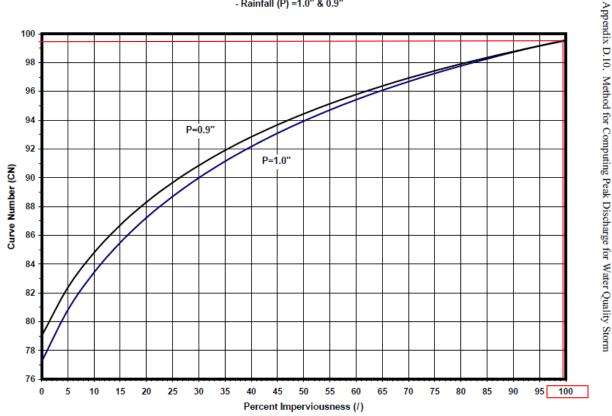


Figure 5: Graph Depicting CN to Percent Impervious Relationship by Precipitation Depth (MD 2000, Figure D-10.1). Note at 100% imperviousness, precipitation depths coincide, making corresponding Runoff CN greater than 98.

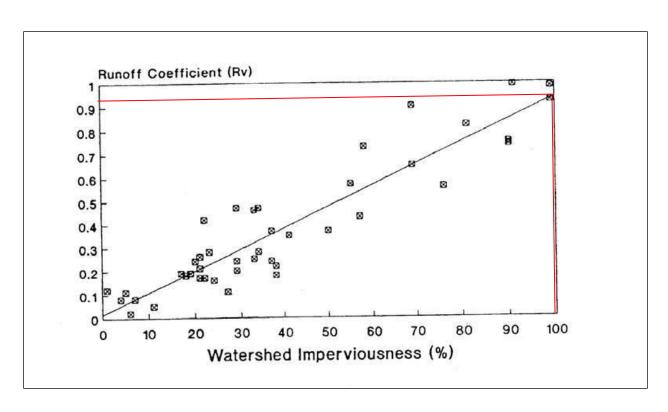


Figure 6: Relationship Between Impervious Cover & Runoff Coefficient (Vermont 2002, from Schueler, 1987). Note at 100% imperviousness, Rv is between 0.9 and 1, meaning that most of the precipitation effectively becomes runoff.

Table 2-1 Runoff depth for selected CN's and rainfall amounts $^{1/2}$

	Runoff depth for curve number of—												
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
	3					- 6	inches —						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77
3.5	.02	.08	.20	.35	.53	.75	1.01	1.30	1.64	2.02	2.45	2.94	3.27
4.0	.06	.18	.33	.53	.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
4.5	.14	.30	.50	.74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.26
5.0	.24	.44	.69	.98	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	.50	.80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.76
7.0	.84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3.33	3.89	4.46	5.04	5.63	6.21	6.81	7.40	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6.57	7.18	7.79	8.40	8.76
10.0	2.23	2.89	3.56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.40	9.76
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.76
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.76
13.0	4.00	4.89	5.76	6.61	7.42	8.21	8.98	9.71	10.42	11.10	11.76	12.39	12.76
14.0	4.65	5.62	6.55	7.44	8.30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.76
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.76

Figure 7: Table Depicting Relationship Between Precipitation (P) and Direct Runoff (Q) by Curve Number (NRCS 1986, Table 2-1). 1.2 inches of precipitation effectively becomes 0.99-inch of runoff.

Figure 2-1 Solution of runoff equation.

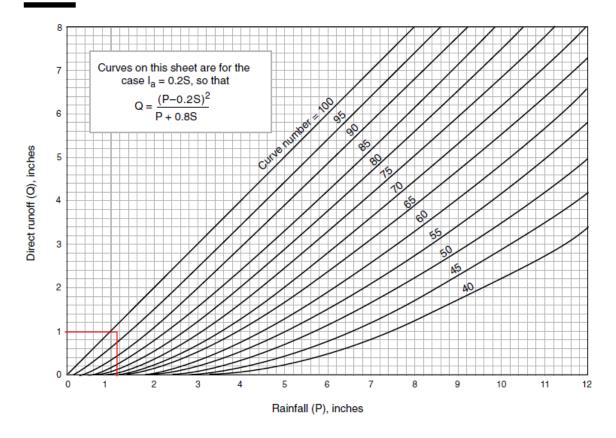


Figure 8: Graph Depicting Relationship Between Precipitation (P) and Direct Runoff (Q) by Curve Number (NRCS 1986, Figure 2-1). This indicates that for a CN 98 (representing impervious surfaces), 1.2 inches of precipitation effectively equals 1-inch of direct runoff.

Table 4-1 Ia values for runoff curve numbers

Curve	I_a	Curve	I_a
number	(in)	number	(in)
40	3.000	70	0.857
41	2.878	71	0.817
42	2.762	72	0.778
43	2.651	73	0.740
44	2.545	74	0.703
45	2.444	75	0.667
46		76	0.632
47		77	
48		78	
49		79	
50		80	
51		81	0.469
52		82	0.439
53		83	0.410
54	1.704	84	0.381
55	1.636	85	0.353
56	1.571	86	0.326
57	1.509	87	0.299
58	1.448	88	0.273
59	1.390	89	0.247
60	1.333	90	0.222
61	1.279	91	0.198
62	1.226	92	0.174
63	1.175	93	0.151
64	1.125	94	0.128
65	1.077	95	0.105
66	1.030	96	0.083
67	0.985	97	0.062
68	0.941	98	0.041
69			

Figure 9: Table Listing Ia by CN (NRCS 1986, Table 4-1). This indicates Initial Abstraction (Ia) for CN 98 = 0.041

Figure 4-1 Variation of I_a/P for P and CN

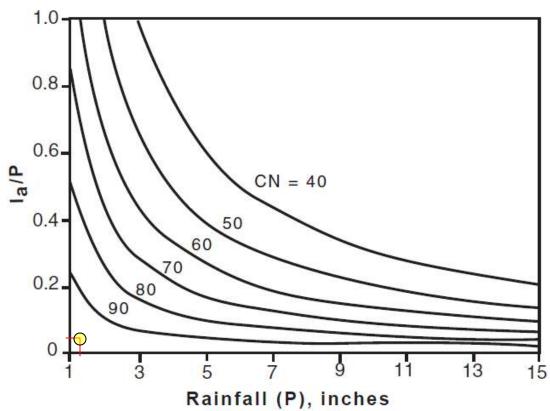


Figure 10: Graph Depicting Ia/P to Precipitation Relationship by CN (NRCS 1986, Figure 4-1). Ia/P ratio of 0.034 corresponding to 1.2 inches of precipitation added. Ia/P ratio determined for CN 98, using Ia = 0.041, P = 1.2

Exhibit 4-III Unit peal discharge (qu) for NRCS (SCS) type III rainfall distribution

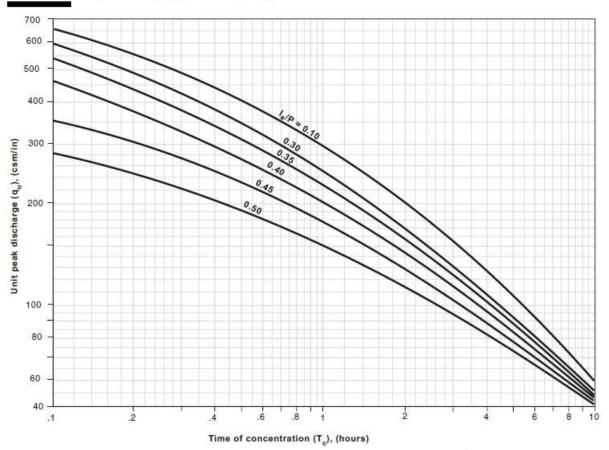


Figure 11: Relationship Between Time of Concentration and Unit Peak Discharge for Ia/P Ratios from 0.10 to 0.50 for NRCS Type III Storm Distribution (NRCS 1986, Exhibit 4-III). NRCS / SCS 1986 specifies Type III storm distribution (tropical influenced storms) for Massachusetts. See Figure 3 and 4 for Ia/P Ratio = 0.034

References:

Ahlfeld, D.P. and Minihane, M., 2004, Storm flow from the first-flush precipitation in stormwater design, Journal of Irrigation and Drainage Engineering, 130:4, pp. 269 – 276.

Bryant, G., undated, Massachusetts Rainfall Intensity Analysis, Hydroworks LLC, 9 pages

Claytor, R. and T. Schueler, 1996. *Design of Stormwater Filtering Systems*. Center for Watershed Protection. Ellicott City, MD, Pages 2-27 to 2-29, WEB: http://www.mckenziewaterquality.org/documents/stormwater_filtration_system_design.pdf

Connecticut Department of Environmental Protection, 2004, Connecticut Stormwater Quality Manual, Appendix B, pages B-1 to B-3, WEB:

http://www.ct.gov/deep/lib/deep/water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater/manual/Apx_B_Water_regulating_and_discharges/stormwater_regulating_and_discha

DeGaetano, A. and Zarrow, D., Extreme Precipitation in New York and New England, northeast Regional Climate Center, Cornell University, WEB: http://precip.eas.cornell.edu/docs/xprecip_techdoc.pdf

Douglas, E. and Fairbank, C., 2011, Is Precipitation in Northern New England Becoming More Extreme? Statistical Analysis of Extreme Rainfall in Massachusetts, New Hampshire, and Maine and Updated Estimates of the 100-year Storm, Journal of Hydrologic Engineering, Volume 16, No. 3, pp 203 - 217

Froehlich, David C., 2009, Graphical Calculation of First Flush Flow Rates for Storm-Water Quality Control, Journal of Irrigation and Drainage Engineering, Vol. 135, No. 1

Hershfield, D. M.,1961, Rainfall frequency atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 years. Weather Bureau Technical Paper No. 40, U.S. Weather Bureau, Washington D.C.

Knox County, Stormwater Management Manual, Volume 2, Section 3.1.7.2, http://www.knoxcounty.org/stormwater/pdfs/vol2/3-1-7%20Water%20Quality%20Calculations.pdf

Maryland Dept. of the Environment, 2000, Stormwater Design Manual, Appendix D.10, Method for Computing Peak Discharge for Water Quality Storm, Pages D.10.1 to D.10.4, WEB: http://mde.maryland.gov/assets/document/sedimentstormwater/Appnd D10.pdf

National Weather Service, 2013, Hydrometeorological Design Studies Center, Quarterly Progress Report, April 1, 2013 to June 30, 2013, WEB: http://www.nws.noaa.gov/oh/hdsc/current-projects/progress/201307 HDSC PR.pdf

Natural Resources Conservation Service (NRCS), 1986, Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55). WEB: ftp://ftp.wcc.nrcs.usda.gov/wntsc/H&H/other/TR55documentation.pdf

New Hampshire Department of Environmental Services, 2008, New Hampshire Stormwater Manual, Volume 2, Chapter 2, Pages 9 - 10, WEB:

http://des.nh.gov/organization/divisions/water/stormwater/documents/wd-08-20b ch2.pdf

New Jersey Department of Environmental Protection, 2009, Protocol for Total Suspended Solids Removal Based on Field Testing Amendments to TARP Protocol, WEB: http://www.state.nj.us/dep/stormwater/pdf/field_protocol_08_05_09.pdf

Pitt, R., 1999, Small Storm Hydrology and Why it is Important for the Design of Stormwater Control Practices, In: Advances in Modeling the Management of Stormwater Impacts, Volume 7. (Edited by W. James). Computational Hydraulics International, Guelph, Ontario and Lewis Publishers/CRC Press. 1999. WEB: http://rpitt.eng.ua.edu/Publications/UrbanHyandCompsoils/small%20storm%20hydrology%20Pitt%20james98.pdf

Rees, Paula and Schoen, Jerry, 2009, PCSWMM Evaluation, Final Technical Report, Prepared for Massachusetts Department of Environmental Protection Project 2008-08/319, University of Massachusetts at Amherst, Water Resources Research Center

Rhode Island Department of Environmental Management, 2010, DRAFT Rhode Island Stormwater Design and Installation Standards Manual, Chapter 3, Section 3.3.3.2, Page 3-15, WEB: http://www.dem.ri.gov/pubs/wetmanl/stormmnl.pdf

Schueler, Thomas, 1987, Controlling urban runoff: a practical manual for planning and designing urban BMPs. Appendix A. Department of Environmental Programs. Metropolitan Washington Council of Governments, Washington, DC.

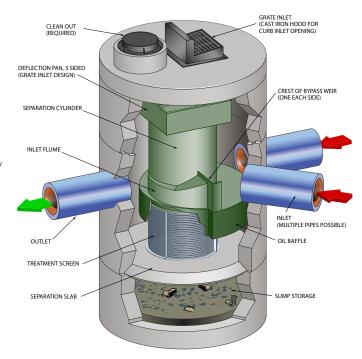
Vermont Agency of Natural Resources, 2002, Vermont Stormwater Management Manual, Volume I, Section 1.3.2, Pages 1-15 to 1-16, WEB: http://www.vtwaterquality.org/stormwater/docs/sw_manual-vol1.pdf

Winkler, E, Ahlfeld, D., Askar, G., Minihane, M., 2001, Final Report: Development of a Rational Basis for Designing Recharging Stormwater Control Structures and Flow and Volume Design Criteria. Prepared for Massachusetts Department of Environmental Protection Project 99-06/319. University of Massachusetts at Amherst (PDF File, April, 2001)

CDS®

Solutions Solutions Guide

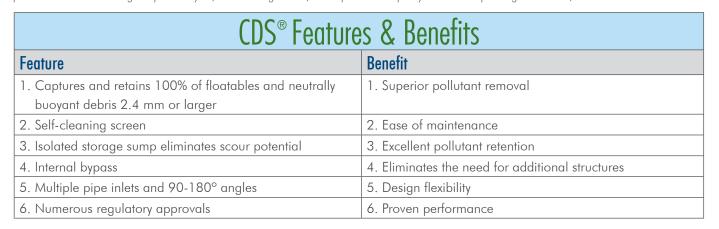
Continuous Deflective Separation - CDS®



Superior Stormwater Trash and Sediment Removal

The CDS is a swirl concentrator hybrid technology that uses continuous deflective separation – a combination of swirl concentration and indirect screening to screen, separate and trap debris, sediment, and hydrocarbons from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material debris 2.4 mm or larger, without binding. CDS retains all captured pollutants, even at high flow rates, and provides easy access for maintenance.

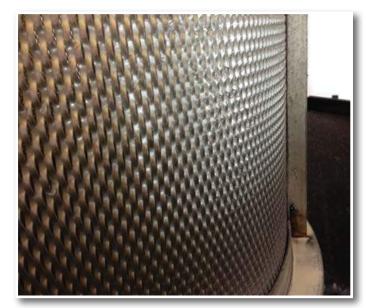
CDS is used to meet trash Total Maximum Daily Load (TMDL) requirements, for stormwater quality control, inlet and outlet pollution control, and as pretreatment for filtration, detention/infiltration, bioretention, rainwater harvesting systems, and a variety of green infrastructure practices.



CDS® Approvals

CDS has been verified by some of the most stringent stormwater technology evaluation organizations in North America, including:

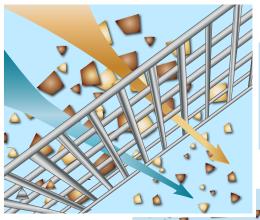
- Washington State Department of Ecology
- New Jersey Department of Environmental Protection
- Canadian Environmental Technology Verification (ETV)
- California Statewide Trash Amendments Full Capture System Certified*



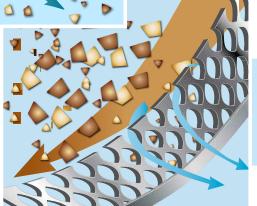
The CDS® Screen

Traditional approaches to trash control typically involve "direct screening" that can easily become clogged, as trash is pinned to the screen as water passes through. Clogged screens can lead to flooding as water backs up.

The design of the CDS screen is fundamentally different. Flow is introduced to the screen face which is louvered so that it is smooth in the downstream direction. The effect created is called "Continuous Deflective Separation." The power of the incoming flow is harnessed to continually shear debris off the screen and to direct trash and sediment toward the center of the separation cylinder.



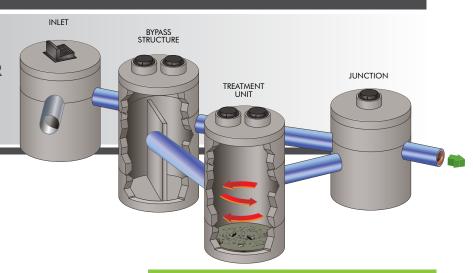
Key Features:


Self-Cleaning Screening Technology

- CDS Screen captures neutrally buoyant materials missed by other separator systems.
- Screen is hydraulically designed to be self-cleaning.
- Runoff entering the separation cylinder must pass through the screen prior to discharge, eliminating potential for scouring previously captured trash at high flow rates.

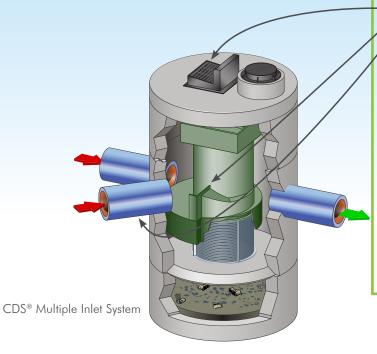
The CDS Screen — Self-Cleaning Screening Technology * * *

Direct Screening – particles that are larger than the aperture size of the screen can cause clogging, resulting in flooding if not maintained frequently.


Continuous Deflective Separation Indirect Screening — water velocities within the swirl chamber continually shear debris off the screen to keep it clean.

CDS® Configuration - One System that Can Do It All!

The CDS effectively treats stormwater runoff while reducing the number of structures on your site.


WHY GO THROUGH ALL THIS?

TRADITIONAL STORMWATER TREATMENT SITE DESIGN

ONE SYSTEM CAN DO IT ALL!

- Inline, offline, grate inlet, and drop inlet configurations available
- Internal and external peak bypass options available

Save Time, Space, and Money with CDS®

- Grate inlet option available
- Internal bypass weir
- Accepts multiple inlets at a variety of angles
- Advanced hydrodynamic separator
- Captures and retains 100% of floatables and neutrally buoyant debris 2.4 mm or larger
- Indirect screening capability keeps screen from clogging
- Retention of all captured pollutants, even at high flows
- Performance verified by NJCAT, WA Ecology, and ETV Canada

CDS® Applications

CDS is commonly used in the following stormwater applications:

- Stormwater quality control trash, debris, sediment, and hydrocarbon removal
- Urban retrofit and redevelopment
- Inlet and outlet protection
- Pretreatment for filtration, detention/infiltration, bioretention, rainwater harvesting systems, and Low Impact Development designs.

CDS provides trash control.

CDS pretreats a bioswale.

CDS pretreats a rainwater harvesting cistern.

CDS standalone system removes trash and sediment.

CDS® Models and Capacities

	Treatment Flow Rates ¹			Estimated	Minimum	Minimum		
	CDS MODEL	75 microns (cfs)/(L/s)	125 microns ² (cfs)/(L/s)	Trash & Debris (cfs)/(L/s)	Maximum Peak Conveyance Flow³ (cfs)/(L/s)	Sump Storage Capacity ⁴ (yd³)/(m³)	Oil Storage Capacity ⁴ (gal)/(L)	
	CDS2015-4	0.5 (14.2)	0.7 (19.8)	1.0 (28.3)	10 (283)	0.9 (0.7)	61 (232)	
	CDS2015-5	0.5 (14.2)	0.7(19.8)	1.0 (28.3)	10 (283)	1.5 (1.1)	83 (313)	
	CDS2020-5	0.7 (19.8)	1.1 (31.2)	1.5 (42.5)	14 (396)	1.5 (1.1)	99 (376)	
	CDS2025-5	1.1 (31.2)	1.6 (45.3)	2.2 (62.3)	14 (396)	1.5 (1.1)	116 (439)	
	CDS3020-6	1.4 (39.6)	2.0 (56.6)	2.8 (79.3)	20 (566)	2.1 (1.6)	184 (696)	
	CDS3025-6	1.7 (48.1)	2.5 (70.8)	3.5 (99.2)	20 (566)	2.1 (1.6)	210 (795)	
	CDS3030-6	2.0 (56.6)	3.0 (85.0)	4.2 (118.9)	20 (566)	2.1 (1.6)	236 (895)	
_	CDS3035-6	2.6 (73.6)	3.8 (106.2)	5.3 (150.0)	20 (566)	2.1 (1.6)	263 (994)	
CAS	CDS4030-8	3.1 (87.7)	4.5 (127.4)	6.3 (178.3)	30 (850)	5.6 (4.3)	426 (1612)	
PRECAST	CDS4040-8	4.1 (116.1)	6.0 (169.9)	8.4 (237.8)	30 (850)	5.6 (4.3)	520 (1970)	
	CDS4045-8	5.1 (144.4)	7.5 (212.4)	10.5 (297.2)	30 (850)	5.6 (4.3)	568 (2149)	
	CDS5640-10	6.1 (172.7)	9.0 (254.9)	12.6 (356.7)	50 (1416)	8.7 (6.7)	758 (2869)	
	CDS5653-10	9.5 (268.9)	14.0 (396.5)	19.6 (554.8)	50 (1416)	8.7 (6.7)	965 (3652)	
	CDS5668-10	12.9 (365.1)	19.0 (538.1)	26.6 (752.9)	50 (1416)	8.7 (6.7)	1172 (4435)	
	CDS5678-10	17.0 (481.2)	25.0 (708.0)	35.0 (990.7)	50 (1416)	8.7 (6.7)	1309 (4956)	
	CDS9280-12	27.2 (770.2)	40.0 (1132.7)	56.0 (1585.7)		16.8 (12.8)		
	CDS9290-12	35.4 (1002.4)	52.0 (1472.5)	72 (2038.8)		16.8 (12.8)		
	CDS92100-12	42.8 (1212.0)	63.0 (1783.9)	88 (2491.9)	Offline	16.8 (12.8)	N/A	
Щ	CDS150134-22	100.7 (2851.5)	148.0 (4190.9)	270 (7645.6)	Online	56.3 (43.0)	IN/A	
PLAC	CDS200164-26	183.6 (5199.0)	270.0 (7645.6)	378.0 (10703.8)		78.7 (60.2)		
7	CDS240160-32	204 (5776.6)	300.0 (8495.1)	420.0 (8495.1)		119.1 (91.1)		
CAST-IN-PLAC	Additional Cast-in-Place models available upon request.							

- 1. Alternative PSD/D_{50} sizing is available upon request.
- 2. 125 micron flows are based on the CDS Washington State Department of Ecology approval for 80% removal of a particle size distribution (PSD) having a mean particle size (D_{50}) of 125 microns.
- 3. Estimated maximum peak conveyance flow is calculated using conservative values and may be exceeded on sites with lower inflow velocities and sufficient head over the weir.
- 4. Sump and oil capacities can be customized to meet site needs

CDS® Maintenance

Systems vary in their maintenance needs, and the selection of a cost-effective and easy-to-access treatment system can mean a huge difference in maintenance expenses for years to come.

A CDS unit is designed to minimize maintenance and make it as easy and inexpensive as possible to keep our systems working properly.

Inspection

Inspection is the key to effective maintenance. Pollutant deposition and transport may vary from year to year and site to site. Semi-annual inspections will help ensure that the system is cleaned out at the appropriate time. Inspections should be performed more frequently where site conditions may cause rapid accumulation of pollutants.

Most CDS units can easily be cleaned in 30 minutes.

Recommendations for CDS Maintenance

The recommended cleanout of solids within the CDS unit's sump should occur at 75% of the sump capacity. Access to the CDS unit is typically achieved through two manhole access covers – one allows inspection and cleanout of the separation chamber and sump, and another allows inspection and cleanout of sediment captured and retained behind the screen. A vacuum truck is recommended for cleanout of the CDS unit and can be easily accomplished in less than 30 minutes for most installations.

DYOHDS™ Tool

Design Your Own Hydrodynamic Separator

Features

- Choose from three HDS technologies CDS®, Vortechs® and VortSentry® HS
- Site specific questions ensure the selected unit will comply with site constraints
- Unit size based on selected mean particle size and targeted removal percentage
- Localized rainfall data allows for region specific designs
- PDF report includes detailed performance calculations, specification and standard drawing for the unit that was sized

T Design Your Own (DYO) Hydrodynamic Separator online at www.ContechES.com/dyohds

Learn more

See our CDS systems in action at www.ContechES.com/videos

Connect with Us

We're here to make your job easier – and that includes being able to get in touch with us when you need to. www.ContechES.com/localresources

Start a Project

If you are ready to begin a project, visit us at www.ContechES.com/startaproject

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, retaining walls, sanitary sewer, stormwater, erosion control and soil stabilization products.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266 related foreign patents or other patents pending.

CDS is a resgistered trademark or licensed trademark of Contech Engineered Solutions LLC.

COMPLETE SITE SOLUTIONS

Stormwater Solutions

Helping to satisfy stormwater management requirements on land development projects

- Stormwater Treatment
- Detention/Infiltration
- Rainwater Harvesting
- Biofiltration/Bioretention

Pipe Solutions

Meeting project needs for durability, hydraulics, corrosion resistance, and stiffness

- Corrugated Metal Pipe (CMP)
- Steel Reinforced Polyethylene (SRPE)
- High Density Polyethylene (HDPE)
- Polyvinyl Chloride (PVC)

Structures Solutions

Providing innovative options and support for crossings, culverts, and bridges

- Plate, Precast & Truss bridges
- Hard Armor
- Retaining Walls
- Tunnel Liner Plate

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

©2017 Contech Engineered Solutions LLC, a QUIKRETE Company 800-338-1122 | www.ContechES.com All Rights Reserved. Printed in the USA.

Get Social With Us!

We print our brochures entirely on Forest Stewardship Council certified paper. FSC certification ensures that the paper in our brochures contain fiber from wellmanaged and responsibly harvested forests that meet strict environmental and socioeconomic standards.

RECHARGE VOLUME

Project Name: Nichols Townhouses Project # 076491

Date: May 22, 2022

Following Guidelines From "Massachusetts Stormwater Management Technical Handbook"

Recharge Volume

Rv = F * Impervious Area

Where:

Rv = Required Recharge Volume F = Target Depth Factor

Areas From

AutoCAD	Hydrologic Soil Group	Recharge Factor	Acres
	Α	0.60	0.000
	В	0.35	0.000
	С	0.25	0.826
	D	0.10	0.000

Rv REQUIRED = 0.017 ac ft

750 cf

Available Storage

Volumes From Water Quality Basin to Elev. 639.0 4,290 cu.ft.

HydroCAD

Total Available Storage 4,290 cu.ft. =

4,290 ≥ 750

Drawdown

T = Rv / K (Btm Area)

Where:

T = Time (hrs)

Rv = Required Recharge Volume K = Saturated Hydraulic Conductivity

Table 2.3.3 K=Rawls Rates for Type "C" Silt Loam

T = 4290 / (0.27 * (3553 / 12))

T = 53.7 hrs

53.7 ≤ 72

Prepared By: PMP

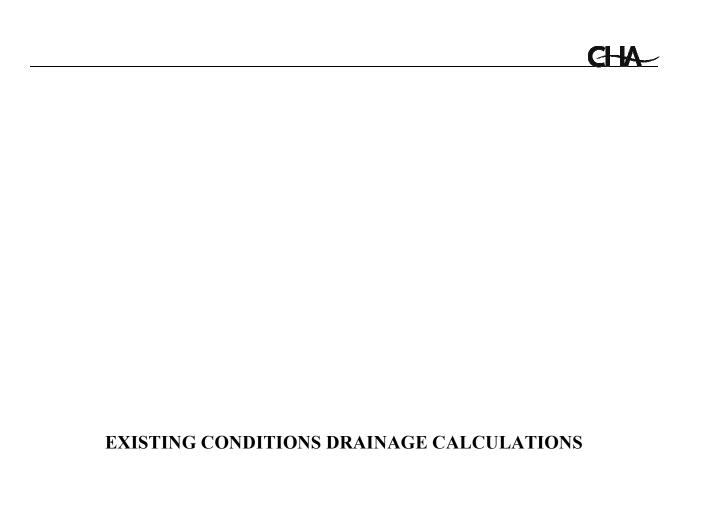
INSTRUCTIONS:

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Nichols College

	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
neet	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
Removal on Worksheet	Oil Grit Separator	0.25	0.75	0.19	0.56
Rem on W	Water Quality Swale - Dry	0.70	0.56	0.39	0.17
TSS Calculati		0.00	0.17	0.00	0.17
Cal		0.00	0.17	0.00	0.17
					Separate Form Needs to


Total TSS Removal =

be Con Outlet

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: Townhouses
Prepared By: P.Parent
Date: 5/22/2022

*Equals remaining load from previous BMP (E) which enters the BMP

Existing to Center Road

Existing to Northern Detention Basin

Existing to West

Existing to South

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC Printed 5/23/2022 Page 2

Area Listing (selected nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
221,205	74	>75% Grass cover, Good, HSG C (1S, 2S, 3S, 4S)
77,220	98	Paved (1S, 2S)
186,175	70	Woods, Good, HSG C (1S, 3S, 4S)
484,600	76	TOTAL AREA

Existing Conditions
Type II 24-hr 2-yr Rainfall=3.29"
Printed 5/23/2022

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 3

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing to Center Runoff Area=142,880 sf 23.89% Impervious Runoff Depth=1.40"

Flow Length=205' Tc=7.9 min CN=79 Runoff=7.69 cfs 16,725 cf

Subcatchment2S: Existing to Northern Runoff Area=63,790 sf 67.55% Impervious Runoff Depth=2.25" Tc=5.0 min CN=90 Runoff=5.87 cfs 11,972 cf

Subcatchment3S: Existing to West

Runoff Area=258,900 sf 0.00% Impervious Runoff Depth=0.99"
Flow Length=530' Tc=20.1 min CN=72 Runoff=6.05 cfs 21,272 cf

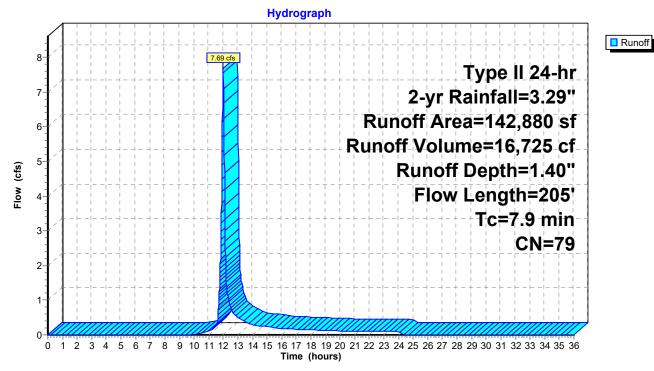
Subcatchment4S: Existing to South

Runoff Area=19,030 sf 0.00% Impervious Runoff Depth=0.99"
Flow Length=255' Tc=16.0 min CN=72 Runoff=0.51 cfs 1,564 cf

Total Runoff Area = 484,600 sf Runoff Volume = 51,532 cf Average Runoff Depth = 1.28" 84.07% Pervious = 407,380 sf 15.93% Impervious = 77,220 sf

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 1S: Existing to Center Road

Runoff = 7.69 cfs @ 12.00 hrs, Volume= 16,725 cf, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

	Α	rea (sf)	CN E	Description					
*		34,130	98 F	Paved					
		88,835	74 >	·75% Gras	s cover, Go	ood, HSG C			
		19,915	70 V	Voods, Go	od, HSG C				
	1	42,880	79 V	Veighted A	verage				
	1	08,750	7	'6.11% Per	vious Area				
34,130 23.89% Impervious Are						ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	6.8	35	0.0060	0.09		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.29"			
	1.1	170	0.1300	2.52		Shallow Concentrated Flow,			
_						Short Grass Pasture Kv= 7.0 fps			
	7.9	205	Total						

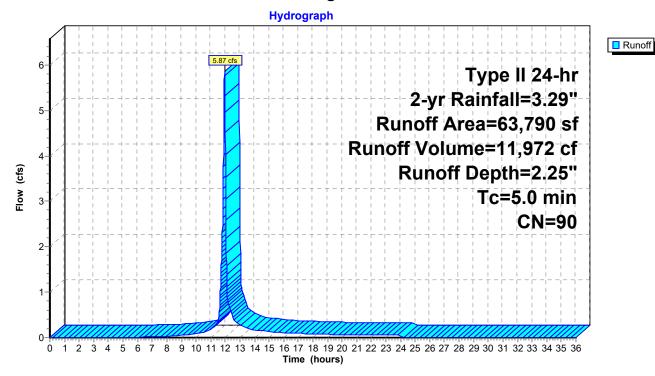
Subcatchment 1S: Existing to Center Road

Page 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 2S: Existing to Northern Detention Basin

Runoff = 5.87 cfs @ 11.96 hrs, Volume= 11,972 cf, Depth= 2.25"

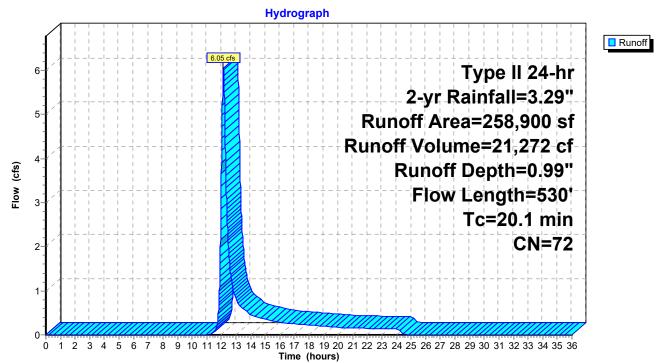
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

	Α	rea (sf)	CN	Description						
4	*	43,090	98	Paved						
_		20,700	74	>75% Grass cover, Good, HSG C						
Ī		63,790	0 90 Weighted Average							
		20,700	32.45% Pervious Area							
		43,090		67.55% lmp	pervious Ar	ea				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 2S: Existing to Northern Detention Basin

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 3S: Existing to West

Runoff = 6.05 cfs @ 12.14 hrs, Volume= 21,272 cf, Depth= 0.99"

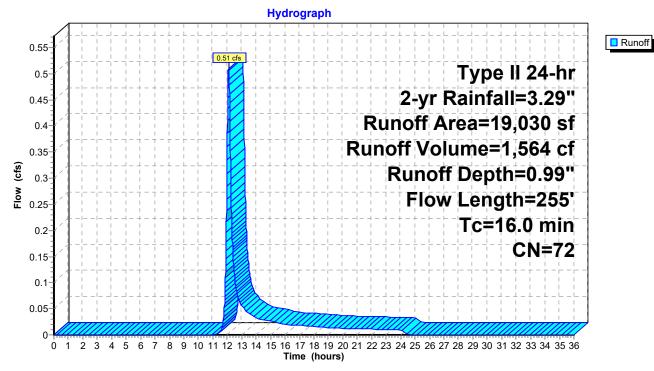
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

_	Α	rea (sf)	CN Description					
101,210 74 >75% Grass cover, Good, HSG C								
	1	57,690	70 V	Voods, Go	od, HSG C			
	2	58,900	72 V	Veighted A	verage			
	258,900 100.00% Pervious Area					a		
	Тс	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	12.4	75	0.0060	0.10		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.29"		
	5.6	165	0.0050	0.49		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	2.1	290	0.1070	2.29		Shallow Concentrated Flow,		
_						Short Grass Pasture Kv= 7.0 fps		
	20.1	530	Total					

Subcatchment 3S: Existing to West

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 4S: Existing to South

Runoff = 0.51 cfs @ 12.10 hrs, Volume= 1,564 cf, Depth= 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

_	Α	rea (sf)	CN I	Description					
-		10,460	74 >75% Grass cover, Good, HSG C						
		8,570	70 Woods, Good, HSG C						
	19,030 72 Weighted Average								
		19,030	•	100.00% Pe	ervious Are	ea			
	_								
	Tc	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	12.4	75	0.0060	0.10		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.29"			
	2.4	100	0.0100	0.70		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	1.2	80	0.0250	1.11		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	16.0	255	Total						

Subcatchment 4S: Existing to South

Existing Conditions
Type II 24-hr 10-yr Rainfall=5.08"
Printed 5/23/2022

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 8

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing to Center Runoff Area=142,880 sf 23.89% Impervious Runoff Depth=2.87"

Flow Length=205' Tc=7.9 min CN=79 Runoff=15.57 cfs 34,180 cf

Subcatchment2S: Existing to Northern Runoff Area=63,790 sf 67.55% Impervious Runoff Depth=3.95" Tc=5.0 min CN=90 Runoff=9.95 cfs 21,016 cf

Subcatchment3S: Existing to West Runoff Area=258,900 sf 0.00% Impervious Runoff Depth=2.26"

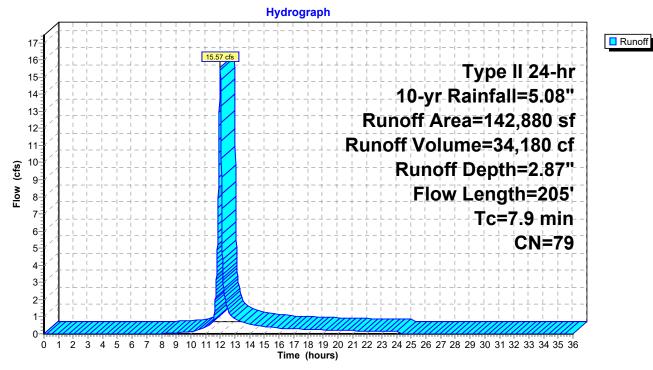
Flow Length=530' Tc=20.1 min CN=72 Runoff=14.78 cfs 48,752 cf

Subcatchment4S: Existing to SouthRunoff Area=19,030 sf 0.00% Impervious Runoff Depth=2.26"
Flow Length=255' Tc=16.0 min CN=72 Runoff=1.23 cfs 3,583 cf

Total Runoff Area = 484,600 sf Runoff Volume = 107,532 cf Average Runoff Depth = 2.66" 84.07% Pervious = 407,380 sf 15.93% Impervious = 77,220 sf

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 1S: Existing to Center Road

Runoff = 15.57 cfs @ 11.99 hrs, Volume= 34,180 cf, Depth= 2.87"

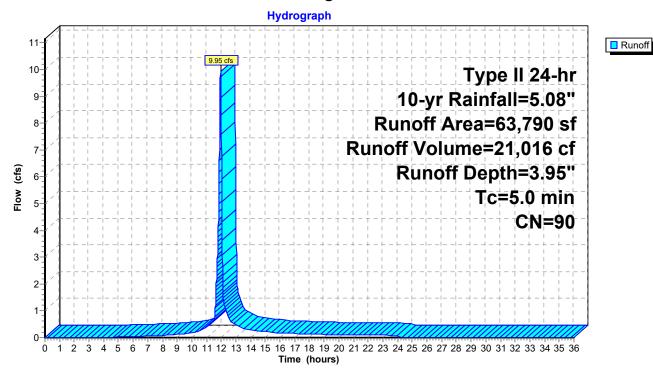
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Α	rea (sf)	CN D	escription						
*		34,130	98 F	98 Paved						
		88,835	74 >	75% Gras	s cover, Go	ood, HSG C				
		19,915	70 V	Voods, Go	od, HSG C					
	1	42,880	79 V	Veighted A	verage					
	1	08,750	7	6.11% Per	vious Area					
34,130 23.89% Impervious Are						ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.8	35	0.0060	0.09		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.29"				
	1.1	170	0.1300	2.52		Shallow Concentrated Flow,				
_						Short Grass Pasture Kv= 7.0 fps				
	7.9	205	Total							

Subcatchment 1S: Existing to Center Road

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 2S: Existing to Northern Detention Basin

Runoff = 9.95 cfs @ 11.96 hrs, Volume= 21,016 cf, Depth= 3.95"

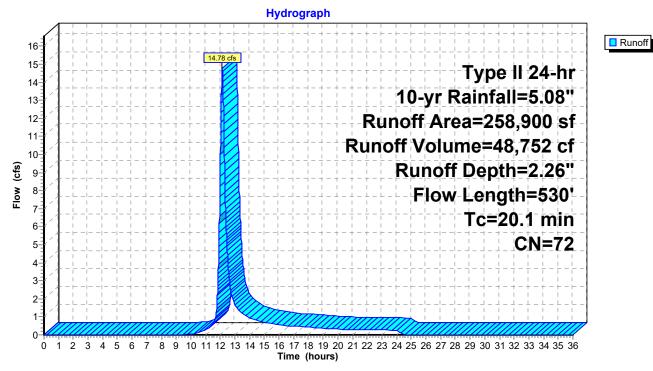
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Α	rea (sf)	CN	Description					
4	•	43,090	98	Paved					
		20,700	74	>75% Gras	s cover, Go	ood, HSG C			
_		63,790	90	Weighted A	verage				
		20,700	32.45% Pervious Area						
		43,090		67.55% lmp	pervious Ar	rea			
	Тс	Length	Slope	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
	5.0					Direct Entry			

Subcatchment 2S: Existing to Northern Detention Basin

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 3S: Existing to West

Runoff = 14.78 cfs @ 12.13 hrs, Volume= 48,752 cf, Depth= 2.26"

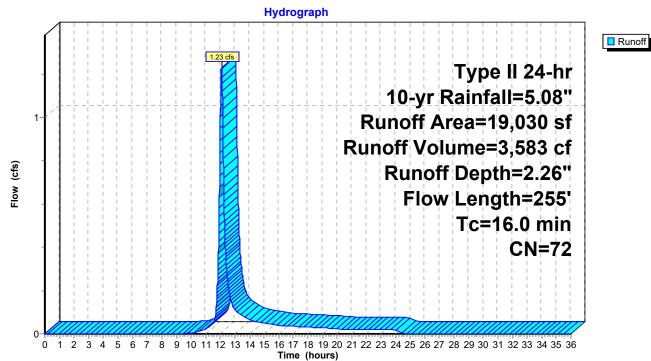
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Area (sf)	CN E	Description				
	101,210 74 >75% Grass cover, Good, HSG C						
	157,690	70 V	<u> Voods, Go</u>	<u>od, HSG C</u>			
2	258,900	72 V	Weighted A	verage			
2	258,900	1	100.00% Pe	ervious Are	ea		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
12.4	75	0.0060	0.10		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.29"		
5.6	165	0.0050	0.49		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
2.1	290	0.1070	2.29		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
20.1	530	Total					

Subcatchment 3S: Existing to West

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 4S: Existing to South

Runoff = 1.23 cfs @ 12.09 hrs, Volume= 3,583 cf, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

A	rea (sf)	CN E	Description						
	10,460	74 >	74 >75% Grass cover, Good, HSG C						
	8,570	70 V	Voods, Go	od, HSG C					
	19,030	72 V	Veighted A	verage					
	19,030	1	00.00% Pe	ervious Are	a				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.4	75	0.0060	0.10		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.29"				
2.4	100	0.0100	0.70		Shallow Concentrated Flow,				
				Short Grass Pasture Kv= 7.0 fps					
1.2	80	0.0250	1.11		Shallow Concentrated Flow,				
	Short Grass Pasture Kv= 7.0 fps								
16.0	255	Total							

Subcatchment 4S: Existing to South

076491 Nichols TownhousesPrepared by CHA Companies, Inc.

Existing Conditions
Type II 24-hr 25-yr Rainfall=6.20"
Printed 5/23/2022

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 13

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing to Center Runoff Area=142,880 sf 23.89% Impervious Runoff Depth=3.86"

Flow Length=205' Tc=7.9 min CN=79 Runoff=20.72 cfs 45,945 cf

Subcatchment2S: Existing to Northern Runoff Area=63,790 sf 67.55% Impervious Runoff Depth=5.04"

Tc=5.0 min CN=90 Runoff=12.48 cfs 26,796 cf

Subcatchment3S: Existing to West Runoff Area=258,900 sf 0.00% Impervious Runoff Depth=3.16"

Flow Length=530' Tc=20.1 min CN=72 Runoff=20.83 cfs 68,125 cf

Subcatchment4S: Existing to South

Runoff Area=19,030 sf 0.00% Impervious Runoff Depth=3.16"

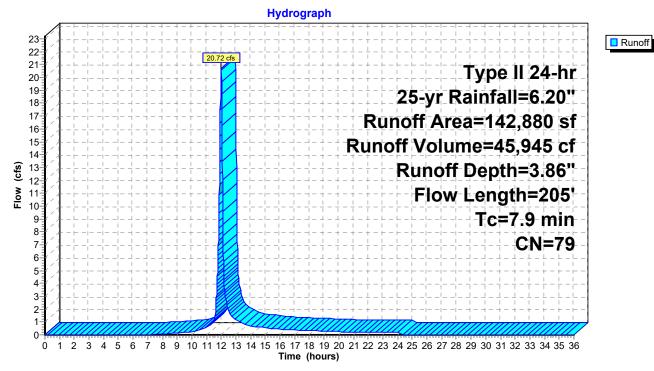
Runoff Area=19,030 sf 0.00% Impervious Runoff Depth=3.16"

Flow Length=255' Tc=16.0 min CN=72 Runoff=1.73 cfs 5,007 cf

Total Runoff Area = 484,600 sf Runoff Volume = 145,873 cf Average Runoff Depth = 3.61" 84.07% Pervious = 407,380 sf 15.93% Impervious = 77,220 sf

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 1S: Existing to Center Road

Runoff = 20.72 cfs @ 11.99 hrs, Volume= 45,945 cf, Depth= 3.86"

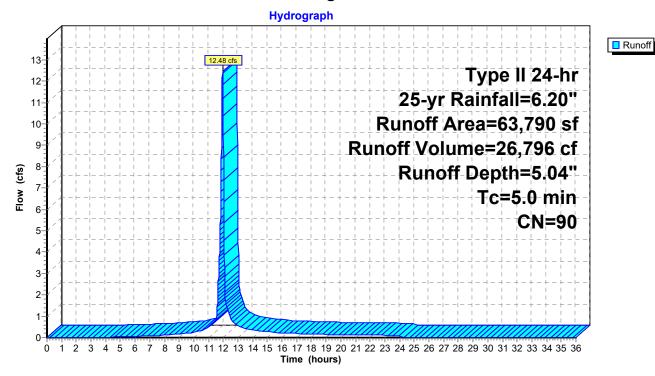
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

_	Α	rea (sf)	CN [Description								
*		34,130	98 F	Paved								
		88,835	74 >	75% Gras	75% Grass cover, Good, HSG C							
_		19,915	70 \	Voods, Go	od, HSG C							
142,880 79 Weighted Average												
	1	08,750	7									
		34,130	2	23.89% Imp	ervious Ar	ea						
	Тс	Length	Slope	Velocity	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	6.8	35	0.0060	0.09		Sheet Flow,						
						Grass: Short n= 0.150 P2= 3.29"						
	1.1	170	0.1300	2.52		Shallow Concentrated Flow,						
_						Short Grass Pasture Kv= 7.0 fps						
	7 9	205	Total									

Subcatchment 1S: Existing to Center Road

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 2S: Existing to Northern Detention Basin

Runoff = 12.48 cfs @ 11.96 hrs, Volume= 26,796 cf, Depth= 5.04"

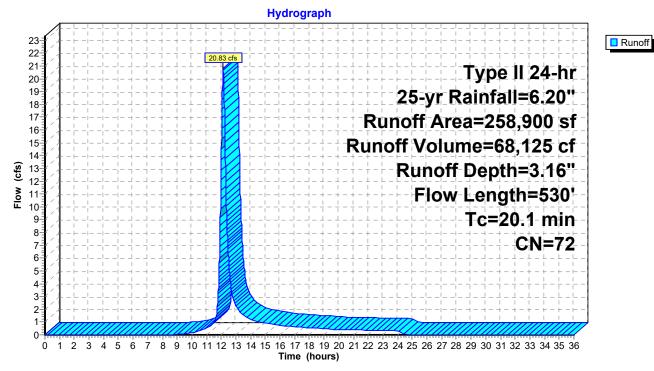
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	Aı	rea (sf)	CN	Description					
4	r	43,090	98	Paved					
		20,700	74	>75% Gras	s cover, Go	Good, HSG C			
		63,790	90	Weighted A	verage				
		20,700	;	32.45% Pervious Area					
		43,090	(67.55% lmp	pervious Ar	rea			
	Тс	Length	Slope	Velocity	Capacity	/ Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.0					Direct Entry.			

Subcatchment 2S: Existing to Northern Detention Basin

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 3S: Existing to West

Runoff = 20.83 cfs @ 12.13 hrs, Volume= 68,125 cf, Depth= 3.16"

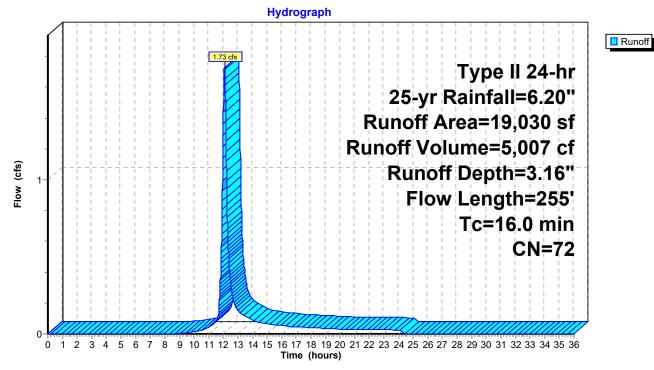
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	A	rea (sf)	CN E	escription			
	101,210 74 >75% Grass cover, Good, HSG C						
	1	57,690	70 V	<u>Voods, Go</u>	od, HSG C		
	2	58,900	72 V	Veighted A	verage		
	2	58,900	1	00.00% Pe	ervious Are	a	
	_					-	
,	Tc	Length	Slope	Velocity	Capacity	Description	
<u>(n</u>	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
1	2.4	75	0.0060	0.10		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.29"	
	5.6	165	0.0050	0.49		Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
	2.1	290	0.1070	2.29		Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
2	20.1	530	Total				

Subcatchment 3S: Existing to West

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 4S: Existing to South

Runoff = 1.73 cfs @ 12.08 hrs, Volume= 5,007 cf, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	rea (sf)	CN E	Description						
	10,460	74 >	74 >75% Grass cover, Good, HSG C						
	8,570	70 V	Voods, Go	od, HSG C					
	19,030	72 V	Veighted A	verage					
	19,030	1	00.00% Pe	ervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.4	75	0.0060	0.10		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.29"				
2.4	100	0.0100	0.70		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
1.2	80	0.0250	1.11		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
16.0	255	Total							

Subcatchment 4S: Existing to South

Existing Conditions
Type II 24-hr 100-yr Rainfall=7.93"
Printed 5/23/2022

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 18

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing to Center Runoff Area=142,880 sf 23.89% Impervious Runoff Depth=5.44"

Flow Length=205' Tc=7.9 min CN=79 Runoff=28.76 cfs 64,805 cf

Subcatchment2S: Existing to Northern Runoff Area=63,790 sf 67.55% Impervious Runoff Depth=6.74" Tc=5.0 min CN=90 Runoff=16.35 cfs 35,811 cf

Subcatchment3S: Existing to WestRunoff Area=258,900 sf 0.00% Impervious Runoff Depth=4.63"
Flow Length=530' Tc=20.1 min CN=72 Runoff=30.60 cfs 99,959 cf

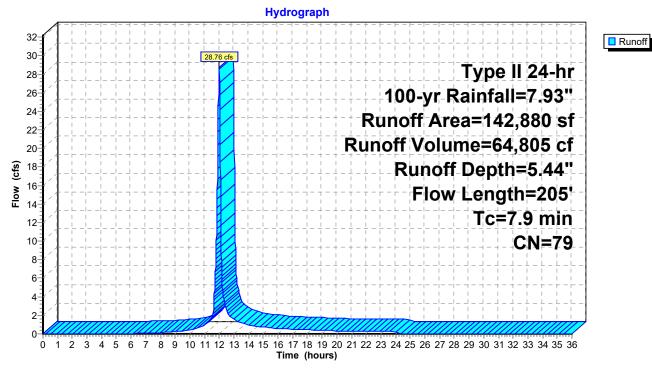
Subcatchment4S: Existing to South

Runoff Area=19,030 sf 0.00% Impervious Runoff Depth=4.63"
Flow Length=255' Tc=16.0 min CN=72 Runoff=2.54 cfs 7,347 cf

Total Runoff Area = 484,600 sf Runoff Volume = 207,922 cf Average Runoff Depth = 5.15" 84.07% Pervious = 407,380 sf 15.93% Impervious = 77,220 sf

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 1S: Existing to Center Road

Runoff = 28.76 cfs @ 11.99 hrs, Volume= 64,805 cf, Depth= 5.44"

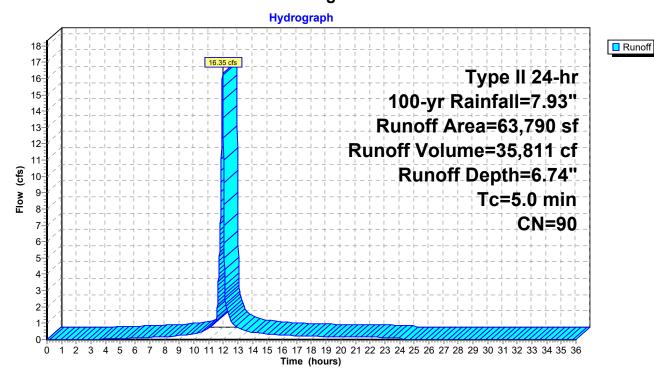
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

	Α	rea (sf)	CN D	escription							
*		34,130	98 F	aved							
		88,835	74 >	75% Gras	s cover, Go	ood, HSG C					
_		19,915	70 V	Voods, Go	Voods, Good, HSG C						
	1	42,880	79 V	Veighted A	verage						
	1	08,750	7	6.11% Pei	rvious Area						
		34,130	2	3.89% Imp	pervious Ar	ea					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	6.8	35	0.0060	0.09	, ,	Sheet Flow,					
						Grass: Short n= 0.150 P2= 3.29"					
	1.1	170	0.1300	2.52		Shallow Concentrated Flow,					
_						Short Grass Pasture Kv= 7.0 fps					
	7.9	205	Total								

Subcatchment 1S: Existing to Center Road

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 2S: Existing to Northern Detention Basin

Runoff = 16.35 cfs @ 11.96 hrs, Volume= 35,811 cf, Depth= 6.74"

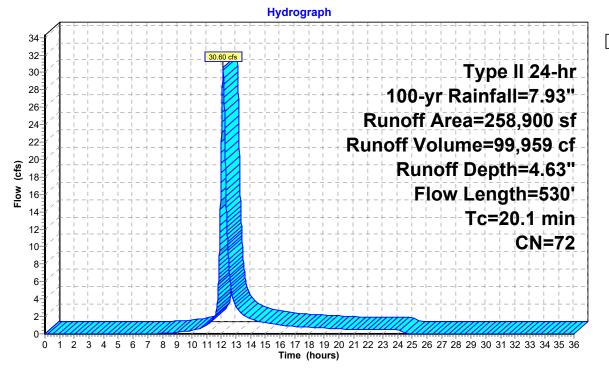
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

	Α	rea (sf)	CN	Description		
4	r	43,090	98	Paved		
_		20,700	74	>75% Gras	s cover, Go	Good, HSG C
_		63,790	90	Weighted A	verage	
		20,700		32.45% Pei	vious Area	a
		43,090		67.55% Imp	ervious Ar	Area
	Тс	Length	Slope	e Velocity	Capacity	/ Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry.

Subcatchment 2S: Existing to Northern Detention Basin

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 3S: Existing to West

Runoff = 30.60 cfs @ 12.13 hrs, Volume= 99,959 cf, Depth= 4.63"

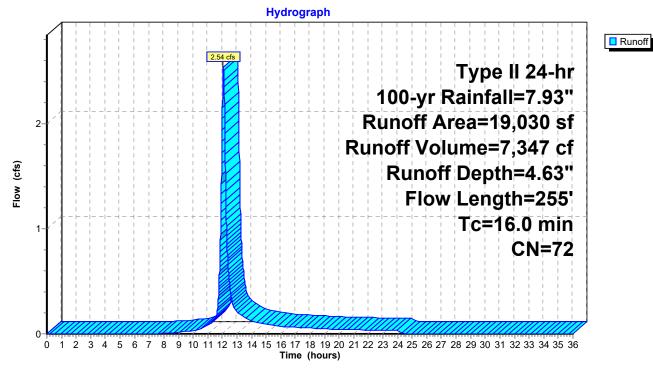
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

A	rea (sf)	CN D	escription				
1	101,210 74 >75% Grass cover, Good, HSG C						
1	57,690	70 V	Voods, Go	od, HSG C			
2	58,900	72 V	Veighted A	verage			
2	58,900	1	00.00% Pe	ervious Are	a		
_				_			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)_	(feet)	(ft/ft)	(ft/sec)	(cfs)			
12.4	75	0.0060	0.10		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.29"		
5.6	165	0.0050	0.49		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
2.1	290	0.1070	2.29		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
20.1	530	Total					

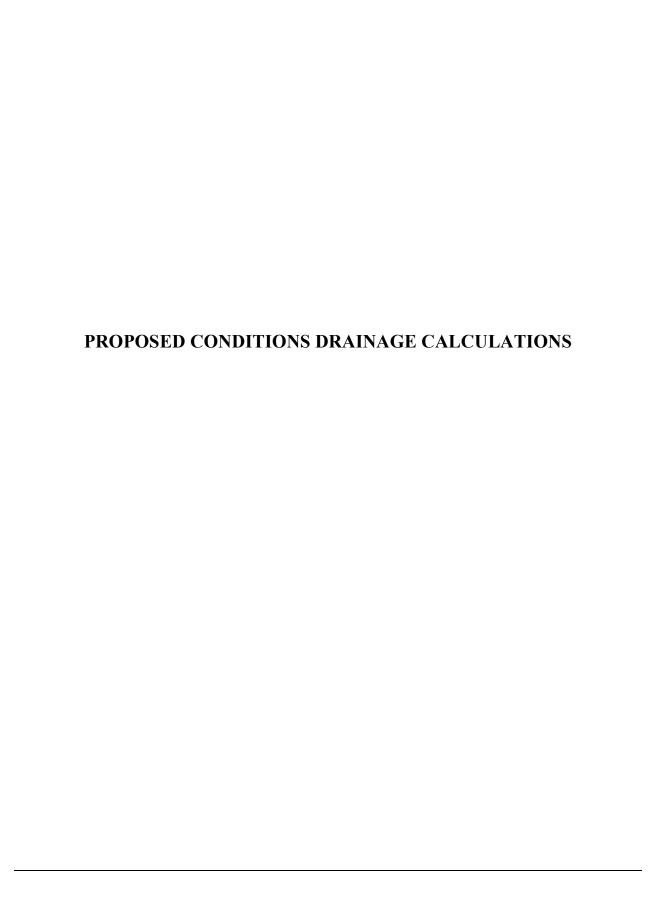
Subcatchment 3S: Existing to West

Prepared by CHA Companies, Inc.

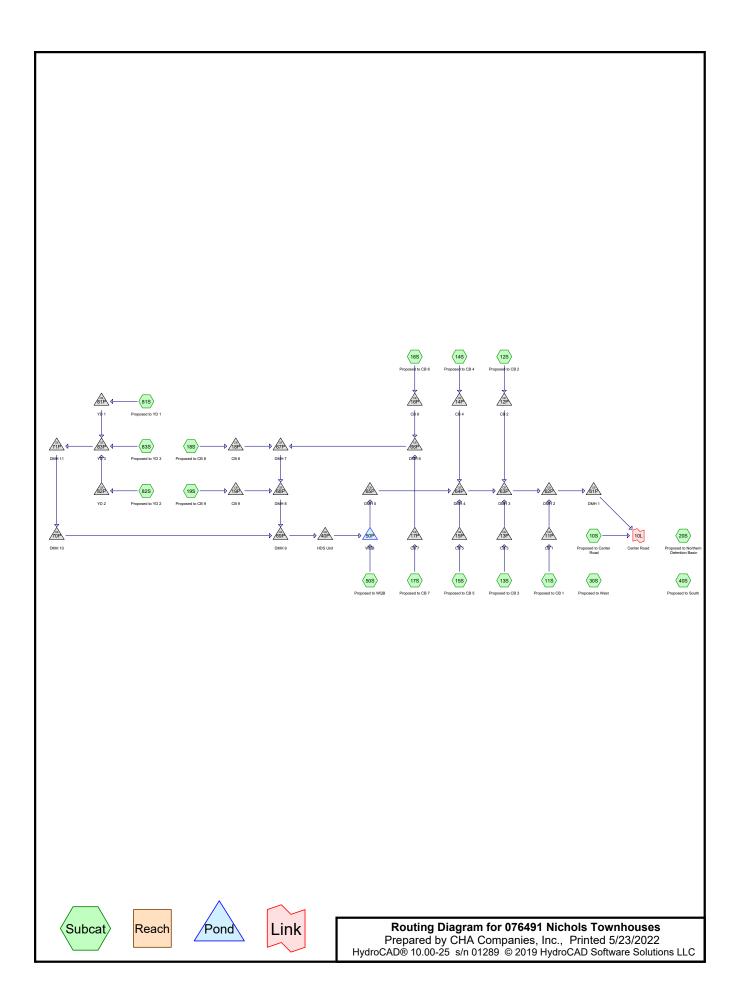
HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 4S: Existing to South

Runoff = 2.54 cfs @ 12.08 hrs, Volume= 7,347 cf, Depth= 4.63"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"


A	rea (sf)	CN [Description						
	10,460	74 >	74 >75% Grass cover, Good, HSG C						
	8,570	70 V	<u> Voods, Go</u>	<u>od, HSG C</u>					
	19,030	72 V	Veighted A	verage					
	19,030	1	100.00% P	ervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/ft) (ft/sec) (cfs)						
12.4	75	0.0060	0.10		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.29"				
2.4	100	0.0100	0.70		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
1.2	80	0.0250	1.11		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
16.0	255	Total							


Subcatchment 4S: Existing to South

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC Printed 5/23/2022 Page 2

Area Listing (selected nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
195,860	74	>75% Grass cover, Good, HSG C (10S, 11S, 12S, 14S, 16S, 17S, 18S, 19S, 20S, 30S, 40S, 50S, 83S)
106,780	98	Paved (10S, 11S, 12S, 13S, 14S, 15S, 16S, 17S, 18S, 19S, 20S, 30S, 81S, 82S, 83S)
6,400	98	Roof (81S, 82S)
175,560	70	Woods, Good, HSG C (10S, 30S, 40S)
484,600	78	TOTAL AREA

Proposed Conditions Type II 24-hr 2-yr Rainfall=3.29" Printed 5/23/2022 Page 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: Proposed to Center	Runoff Area=83,930 sf 43.63% Impervious Runoff Depth=1.76" Tc=5.0 min CN=84 Runoff=6.25 cfs 12,296 cf
Subcatchment11S: Proposed to CB 1	Runoff Area=7,750 sf 41.81% Impervious Runoff Depth=1.76" Tc=5.0 min CN=84 Runoff=0.58 cfs 1,135 cf
Subcatchment12S: Proposed to CB 2	Runoff Area=4,140 sf 22.46% Impervious Runoff Depth=1.40" Tc=5.0 min CN=79 Runoff=0.25 cfs 485 cf
Subcatchment13S: Proposed to CB 3	Runoff Area=930 sf 100.00% Impervious Runoff Depth=3.06" Tc=5.0 min CN=98 Runoff=0.10 cfs 237 cf
Subcatchment14S: Proposed to CB 4	Runoff Area=2,000 sf 34.50% Impervious Runoff Depth=1.61" Tc=5.0 min CN=82 Runoff=0.14 cfs 268 cf
Subcatchment15S: Proposed to CB 5	Runoff Area=660 sf 100.00% Impervious Runoff Depth=3.06" Tc=5.0 min CN=98 Runoff=0.07 cfs 168 cf
Subcatchment16S: Proposed to CB 6	Runoff Area=5,850 sf 56.41% Impervious Runoff Depth=2.08" Tc=5.0 min CN=88 Runoff=0.50 cfs 1,013 cf
Subcatchment17S: Proposed to CB 7	Runoff Area=2,950 sf 74.92% Impervious Runoff Depth=2.44" Tc=5.0 min CN=92 Runoff=0.29 cfs 599 cf
Subcatchment18S: Proposed to CB 8	Runoff Area=3,330 sf 75.98% Impervious Runoff Depth=2.44" Tc=5.0 min CN=92 Runoff=0.33 cfs 676 cf
Subcatchment19S: Proposed to CB 9	Runoff Area=11,800 sf 50.17% Impervious Runoff Depth=1.91" Tc=5.0 min CN=86 Runoff=0.95 cfs 1,882 cf
Subcatchment20S: Proposed to Northern	Runoff Area=56,570 sf 79.49% Impervious Runoff Depth=2.53" Tc=5.0 min CN=93 Runoff=5.67 cfs 11,938 cf
Subcatchment30S: Proposed to West Flo	Runoff Area=230,400 sf 0.36% Impervious Runoff Depth=0.93" ow Length=530' Tc=20.1 min CN=71 Runoff=5.03 cfs 17,908 cf
Subcatchment40S: Proposed to South	Runoff Area=19,030 sf 0.00% Impervious Runoff Depth=0.99" low Length=255' Tc=16.0 min CN=72 Runoff=0.51 cfs 1,564 cf
Subcatchment50S: Proposed to WQB	Runoff Area=34,530 sf 0.00% Impervious Runoff Depth=1.10" Tc=5.0 min CN=74 Runoff=1.61 cfs 3,157 cf
Subcatchment81S: Proposed to YD 1	Runoff Area=4,470 sf 100.00% Impervious Runoff Depth=3.06" Tc=5.0 min CN=98 Runoff=0.49 cfs 1,139 cf
Subcatchment82S: Proposed to YD 2	Runoff Area=4,470 sf 100.00% Impervious Runoff Depth=3.06" Tc=5.0 min CN=98 Runoff=0.49 cfs 1,139 cf

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Subcatchment83S: Propose	Runoff Area=11,790 sf 12.04% Impervious Runoff Depth=1.28" Tc=5.0 min CN=77 Runoff=0.64 cfs 1,254 cf
Pond 11P: CB 1	Peak Elev=636.81' Inflow=0.58 cfs 1,135 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.58 cfs 1,135 cf
Pond 12P: CB 2	Peak Elev=639.24' Inflow=0.25 cfs 485 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.25 cfs 485 cf
Pond 13P: CB 3	Peak Elev=639.25' Inflow=0.10 cfs 237 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.10 cfs 237 cf
Pond 14P: CB 4	Peak Elev=643.68' Inflow=0.14 cfs 268 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.14 cfs 268 cf
Pond 15P: CB 5	Peak Elev=643.63' Inflow=0.07 cfs 168 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.07 cfs 168 cf
Pond 16P: CB 6	Peak Elev=650.38' Inflow=0.50 cfs 1,013 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0100 '/' Outflow=0.50 cfs 1,013 cf
Pond 17P: CB 7	Peak Elev=647.76' Inflow=0.29 cfs 599 cf 12.0" Round Culvert n=0.012 L=9.0' S=0.0222'/' Outflow=0.29 cfs 599 cf
Pond 18P: CB 8	Peak Elev=650.58' Inflow=0.33 cfs 676 cf 12.0" Round Culvert n=0.012 L=6.0' S=0.0250 '/' Outflow=0.33 cfs 676 cf
Pond 19P: CB 9	Peak Elev=650.63' Inflow=0.95 cfs 1,882 cf 12.0" Round Culvert n=0.012 L=6.0' S=0.0250 '/' Outflow=0.95 cfs 1,882 cf
Pond 40P: HDS Unit	Peak Elev=642.42' Inflow=3.69 cfs 7,701 cf 15.0" Round Culvert n=0.012 L=46.0' S=0.0739 '/' Outflow=3.69 cfs 7,701 cf
Pond 50P: WQB	Peak Elev=639.41' Storage=6,531 cf Inflow=5.29 cfs 10,859 cf Outflow=0.21 cfs 6,480 cf
Pond 61P: DMH 1	Peak Elev=633.91' Inflow=1.14 cfs 8,774 cf 12.0" Round Culvert n=0.012 L=70.0' S=0.0679 '/' Outflow=1.14 cfs 8,774 cf
Pond 62P: DMH 2	Peak Elev=635.01' Inflow=1.14 cfs 8,774 cf 12.0" Round Culvert n=0.012 L=100.0' S=0.0100 '/' Outflow=1.14 cfs 8,774 cf
Pond 63P: DMH 3	Peak Elev=635.72' Inflow=0.56 cfs 7,639 cf 12.0" Round Culvert n=0.012 L=77.0' S=0.0104 '/' Outflow=0.56 cfs 7,639 cf
Pond 64P: DMH 4	Peak Elev=636.43' Inflow=0.22 cfs 6,917 cf 12.0" Round Culvert n=0.012 L=75.0' S=0.0100 '/' Outflow=0.22 cfs 6,917 cf
Pond 65P: DMH 5	Peak Elev=637.21' Inflow=0.21 cfs 6,480 cf 12.0" Round Culvert n=0.012 L=72.0' S=0.0097 '/' Outflow=0.21 cfs 6,480 cf

Proposed Conditions
Type II 24-hr 2-yr Rainfall=3.29"
Printed 5/23/2022

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 5

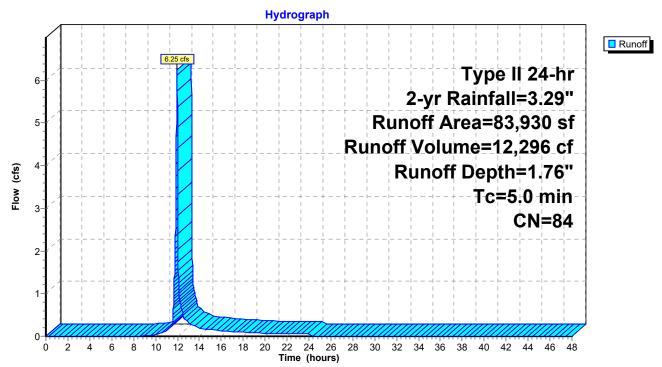
Pond 66P: DMH 6	Peak Elev=647.62' Inflow=0.79 cfs 1,612 cf 15.0" Round Culvert n=0.012 L=87.0' S=0.0103 '/' Outflow=0.79 cfs 1,612 cf
Pond 67P: DMH 7	Peak Elev=646.70' Inflow=1.12 cfs 2,288 cf 15.0" Round Culvert n=0.012 L=68.0' S=0.0103 '/' Outflow=1.12 cfs 2,288 cf
Pond 68P: DMH 8	Peak Elev=646.14' Inflow=2.07 cfs 4,170 cf 15.0" Round Culvert n=0.012 L=42.0' S=0.0095 '/' Outflow=2.07 cfs 4,170 cf
Pond 69P: DMH 9	Peak Elev=643.02' Inflow=3.69 cfs 7,701 cf 15.0" Round Culvert n=0.012 L=8.0' S=0.0750 '/' Outflow=3.69 cfs 7,701 cf
Pond 70P: DMH 10	Peak Elev=648.89' Inflow=1.63 cfs 3,532 cf 12.0" Round Culvert n=0.012 L=193.0' S=0.0166 '/' Outflow=1.63 cfs 3,532 cf
Pond 71P: DMH 11	Peak Elev=650.84' Inflow=1.63 cfs 3,532 cf 12.0" Round Culvert n=0.012 L=112.0' S=0.0165 '/' Outflow=1.63 cfs 3,532 cf
Pond 81P: YD 1	Peak Elev=653.35' Inflow=0.49 cfs 1,139 cf 12.0" Round Culvert n=0.012 L=46.0' S=0.0380 '/' Outflow=0.49 cfs 1,139 cf
Pond 82P: YD 2	Peak Elev=653.35' Inflow=0.49 cfs 1,139 cf 12.0" Round Culvert n=0.012 L=46.0' S=0.0380 '/' Outflow=0.49 cfs 1,139 cf
Pond 83P: YD 3	Peak Elev=651.94' Inflow=1.63 cfs 3,532 cf 12.0" Round Culvert n=0.012 L=60.0' S=0.0167 '/' Outflow=1.63 cfs 3,532 cf
Link 10L: Center Road	Inflow=7.39 cfs 21,069 cf Primary=7.39 cfs 21,069 cf

Total Runoff Area = 484,600 sf Runoff Volume = 56,857 cf Average Runoff Depth = 1.41" 76.64% Pervious = 371,420 sf 23.36% Impervious = 113,180 sf

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 10S: Proposed to Center Road

Runoff = 6.25 cfs @ 11.96 hrs, Volume= 12,296 cf, Depth= 1.76"

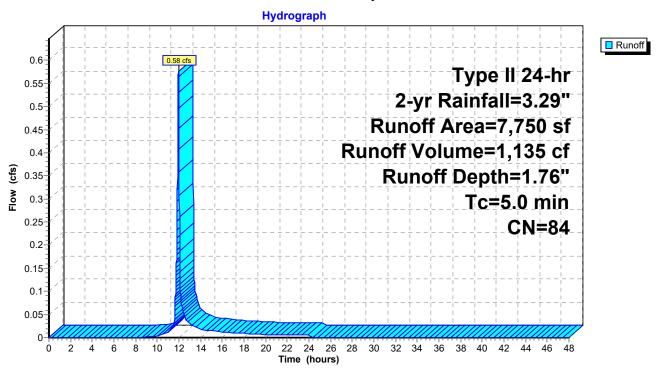
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

	Area (sf)	CN	Description			
*	36,620	98	Paved			
	38,010	74	>75% Gras	s cover, Go	Good, HSG C	
	9,300	70	Woods, Go	od, HSG C		
	83,930	84	Weighted A	verage		
	47,310		56.37% Per	vious Area	a	
	36,620		43.63% Impervious Area			
	-	01		0 "	D	
	Tc Length	Slop				
(r	min) (feet)	(ft/1	ft) (ft/sec) (cfs)			
	5.0				Direct Entry,	

Subcatchment 10S: Proposed to Center Road

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 11S: Proposed to CB 1

Runoff = 0.58 cfs @ 11.96 hrs, Volume= 1,135 cf, Depth= 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

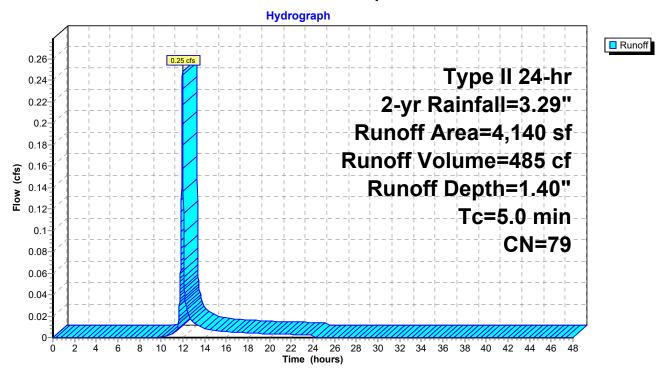
_	Α	rea (sf)	CN	Description						
*		3,240	98	Paved						
_		4,510	74	>75% Grass cover, Good, HSG C						
		7,750	84	Weighted Average						
		4,510		58.19% Pervious Area						
		3,240		41.81% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 11S: Proposed to CB 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 12S: Proposed to CB 2

Runoff = 0.25 cfs @ 11.96 hrs, Volume= 485 cf, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

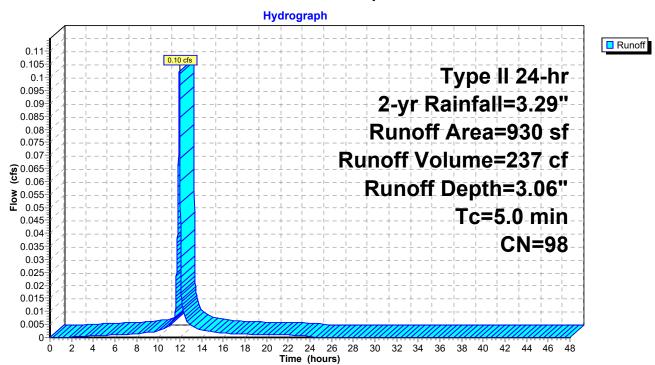
	Α	rea (sf)	CN	Description						
*		930	98	Paved						
		3,210	74	>75% Grass cover, Good, HSG C						
		4,140	79	Weighted Average						
		3,210		77.54% Pervious Area						
		930		22.46% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 12S: Proposed to CB 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 13S: Proposed to CB 3

Runoff = 0.10 cfs @ 11.96 hrs, Volume= 237 cf, Depth= 3.06"

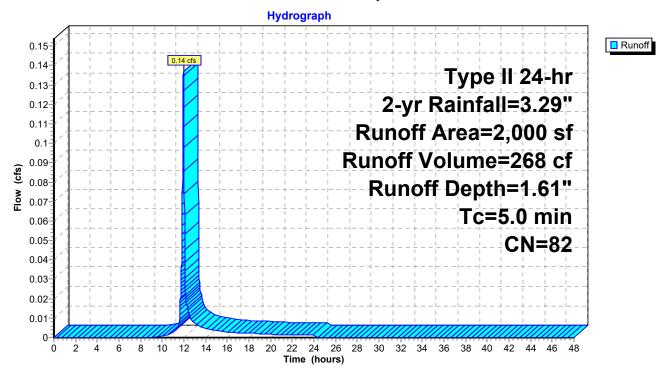
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

_	Α	rea (sf)	CN I	Description		
*		930	98 I	Paved		
_		930		Area		
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 13S: Proposed to CB 3

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 14S: Proposed to CB 4

Runoff = 0.14 cfs @ 11.96 hrs, Volume= 268 cf, Depth= 1.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

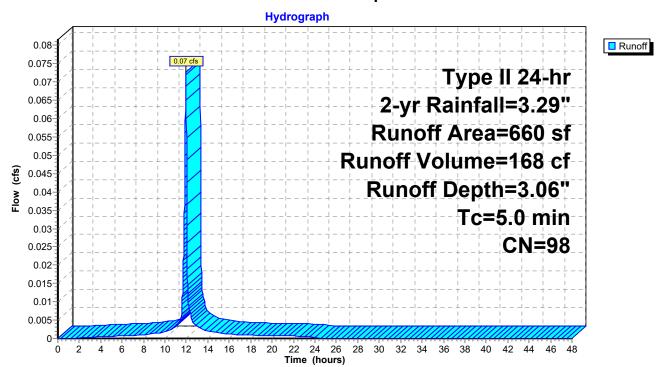
_	Α	rea (sf)	CN	Description						
*		690	98	Paved						
_		1,310	74	>75% Grass cover, Good, HSG C						
		2,000	82	Weighted Average						
		1,310		65.50% Pervious Area						
		690		34.50% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 14S: Proposed to CB 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 15S: Proposed to CB 5

Runoff = 0.07 cfs @ 11.96 hrs, Volume= 168 cf, Depth= 3.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

_	Α	rea (sf)	CN [Description						
*		660	98 F	Paved						
_		660	1	100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry,				

Subcatchment 15S: Proposed to CB 5

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 16S: Proposed to CB 6

Runoff = 0.50 cfs @ 11.96 hrs, Volume= 1,013 cf, Depth= 2.08"

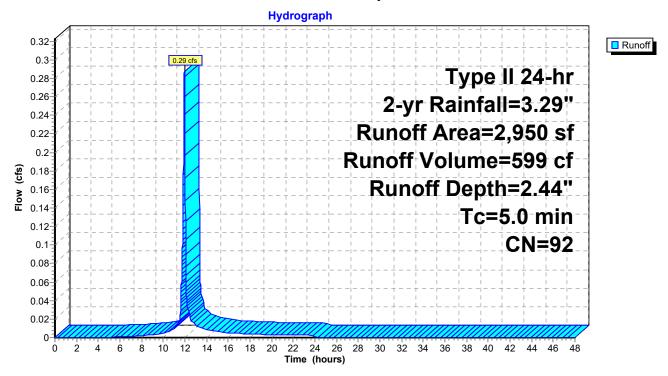
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

_	Α	rea (sf)	CN	Description							
*		3,300	98	Paved							
_		2,550	74	>75% Grass cover, Good, HSG C							
		5,850	88	Weighted Average							
		2,550		43.59% Pervious Area							
		3,300		56.41% Impervious Area							
	Тс	Length	Slope	e Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	5.0					Direct Entry.					

Subcatchment 16S: Proposed to CB 6

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 17S: Proposed to CB 7

Runoff = 0.29 cfs @ 11.96 hrs, Volume= 599 cf, Depth= 2.44"

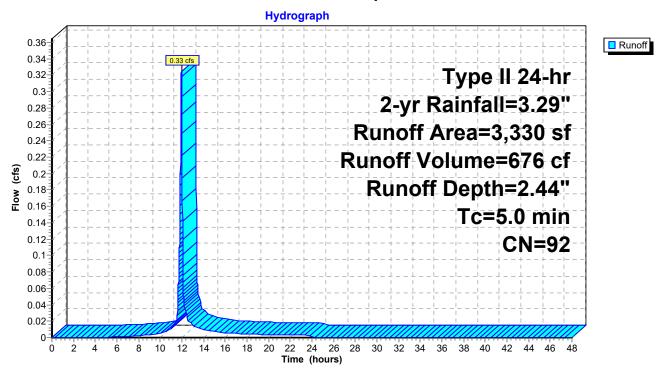
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

_	Α	rea (sf)	CN	Description							
*		2,210	98	Paved							
_		740	74	>75% Grass cover, Good, HSG C							
_		2,950	92	Weighted Average							
		740		25.08% Pervious Area							
		2,210		74.92% Impervious Area							
	Тс	Length	Slope	e Velocity	Capacity	/ Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
_	5.0					Direct Entry.					

Subcatchment 17S: Proposed to CB 7

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 18S: Proposed to CB 8

Runoff = 0.33 cfs @ 11.96 hrs, Volume= 676 cf, Depth= 2.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

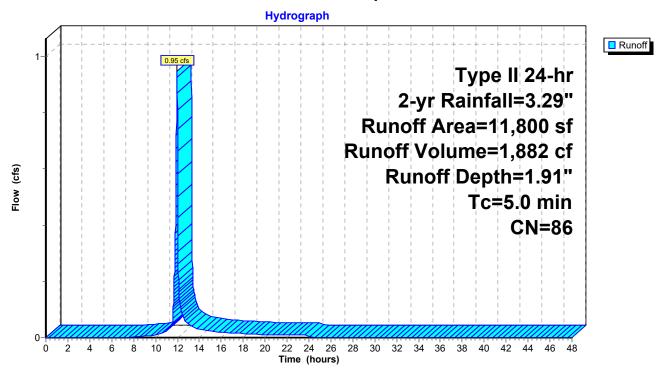
	Α	rea (sf)	CN	Description							
*		2,530	98	Paved							
_		800	74	>75% Grass cover, Good, HSG C							
		3,330 800 2,530	92	Weighted Average 24.02% Pervious Area 75.98% Impervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft	,							
	5.0					Direct Entry.					

Subcatchment 18S: Proposed to CB 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 19S: Proposed to CB 9

Runoff = 0.95 cfs @ 11.96 hrs, Volume= 1,882 cf, Depth= 1.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

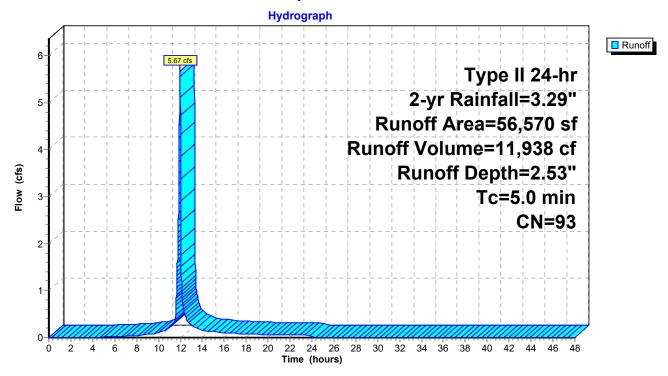
	Α	rea (sf)	CN	Description							
*		5,920	98	Paved							
		5,880	74	>75% Grass cover, Good, HSG C							
		11,800	86	Weighted Average							
		5,880		49.83% Pervious Area							
		5,920		50.17% Impervious Area							
	Тс	Length	Slope	e Velocity	Capacity	y Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	5.0			•		Direct Entry.					

Subcatchment 19S: Proposed to CB 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 20S: Proposed to Northern Detention Basin

Runoff = 5.67 cfs @ 11.96 hrs, Volume= 11,938 cf, Depth= 2.53"

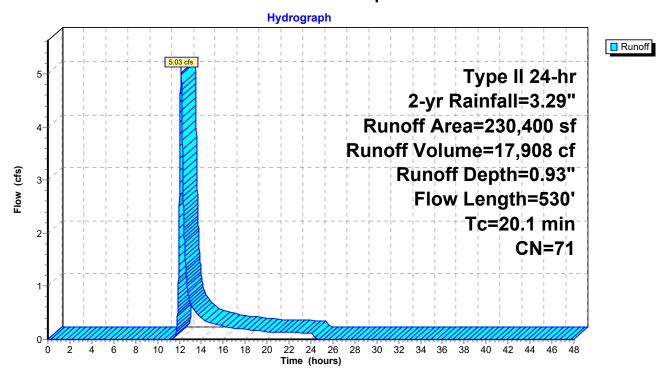
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

	Ar	rea (sf)	CN	Description							
*	•	44,970	98	Paved							
		11,600	74	>75% Gras	s cover, Go	Good, HSG C					
		56,570	93	Weighted Average							
		11,600		20.51% Pervious Area							
		44,970		79.49% Imp	pervious Ar	Area					
	Тс	Length	Slope	e Velocity	Capacity	/ Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	5.0					Direct Entry.					

Subcatchment 20S: Proposed to Northern Detention Basin

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 30S: Proposed to West

Runoff = 5.03 cfs @ 12.15 hrs, Volume= 17,908 cf, Depth= 0.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

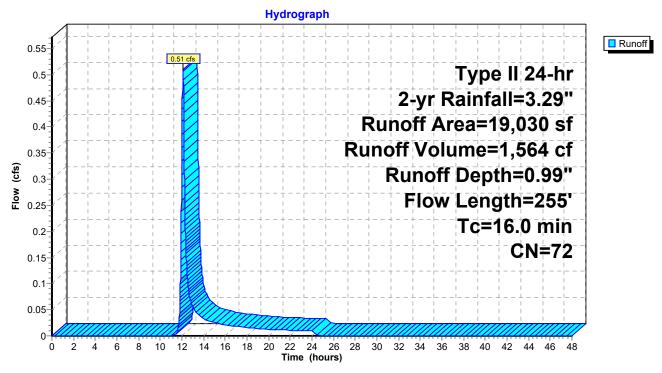
	Aı	rea (sf)	CN [Description						
*		820	98 F	Paved						
		71,890	74 >	>75% Gras	s cover, Go	ood, HSG C				
157,690 70 Woods, Good, HSG C										
	2	30,400	71 \	Weighted A	verage					
	2	29,580	(99.64% Pei	rvious Area					
		820	().36% Impe	ervious Are	a				
	_				<u> </u>					
	Tc	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	12.4	75	0.0060	0.10		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.29"				
	5.6	165	0.0050	0.49		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	2.1	290	0.1070	2.29		Shallow Concentrated Flow,				
_						Short Grass Pasture Kv= 7.0 fps				
	20.1	530	Total							

Subcatchment 30S: Proposed to West

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 40S: Proposed to South

Runoff = 0.51 cfs @ 12.10 hrs, Volume= 1,564 cf, Depth= 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

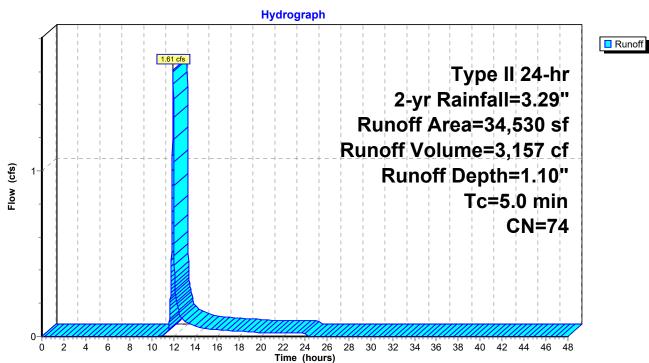
A	rea (sf)	CN E	escription		
	10,460	74 >	75% Gras	s cover, Go	ood, HSG C
	8,570	70 V	Voods, Go	od, HSG C	
	19,030	72 V	Veighted A	verage	
	19,030	1	00.00% Pe	ervious Are	a
_				_	
Tc	Length	Slope	Velocity	Capacity	Description
(min)_	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.4	75	0.0060	0.10		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.29"
2.4	100	0.0100	0.70		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.2	80	0.0250	1.11		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
16.0	255	Total			

Subcatchment 40S: Proposed to South

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 50S: Proposed to WQB

Runoff = 1.61 cfs @ 11.97 hrs, Volume= 3,157 cf, Depth= 1.10"

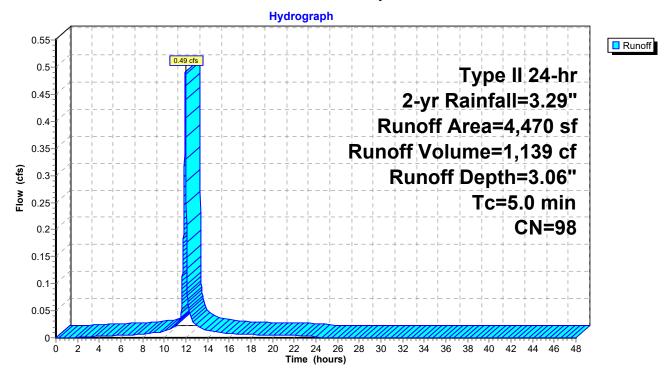
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

A	rea (sf)	CN [N Description		
	34,530	74 >	74 >75% Grass cover, Good, HSG C		
	34,530	•	100.00% Pe	ervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 50S: Proposed to WQB

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 81S: Proposed to YD 1

Runoff = 0.49 cfs @ 11.96 hrs, Volume= 1,139 cf, Depth= 3.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

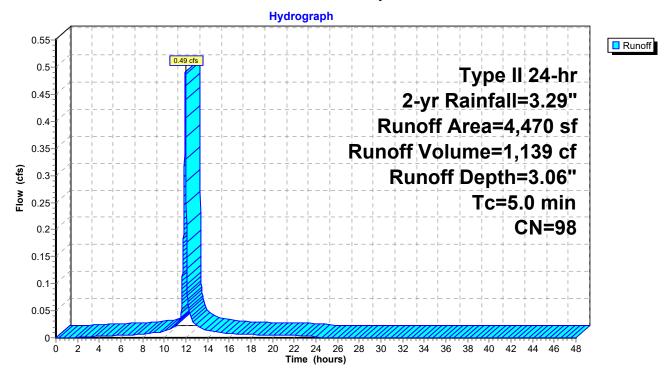
	Α	rea (sf)	CN	Description		
*		3,200	98	Roof		
*		1,270	98	Paved		
		4,470	98	Weighted A	verage	
		4,470		100.00% Im	npervious A	\rea
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 81S: Proposed to YD 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 82S: Proposed to YD 2

Runoff = 0.49 cfs @ 11.96 hrs, Volume= 1,139 cf, Depth= 3.06"

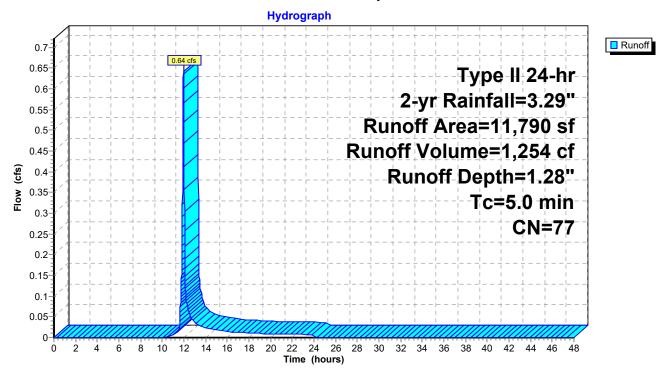
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

	Α	rea (sf)	CN	Description		
*		3,200	98	Roof		
*		1,270	98	Paved		
		4,470	98	Weighted A	verage	
		4,470		100.00% Im	npervious A	\rea
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 82S: Proposed to YD 2

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 83S: Proposed to YD 3

Runoff = 0.64 cfs @ 11.97 hrs, Volume= 1,254 cf, Depth= 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 2-yr Rainfall=3.29"

	Area (sf)	CN	Description				
*	1,420	98	Paved	Paved			
_	10,370	74	>75% Gras	>75% Grass cover, Good, HSG C			
	11,790	77	77 Weighted Average				
	10,370		87.96% Pei	rvious Area	a		
	1,420		12.04% Imp	pervious Ar	rea		
	Tc Length	n Slo	pe Velocity	Capacity	/ Description		
_	(min) (feet)) (ft/	ft) (ft/sec)	(cfs)			
	5.0				Direct Entry.		

Subcatchment 83S: Proposed to YD 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

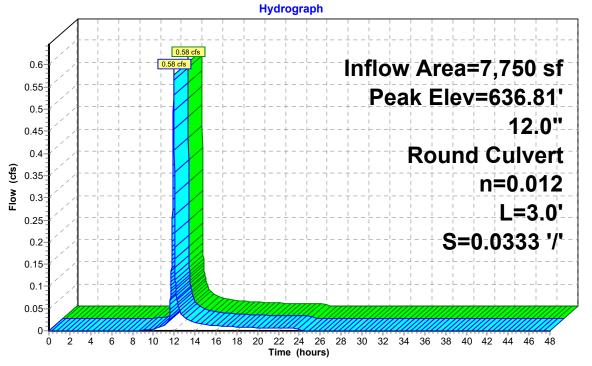
Summary for Pond 11P: CB 1

Inflow Area = 7,750 sf, 41.81% Impervious, Inflow Depth = 1.76" for 2-yr event

Inflow = 0.58 cfs @ 11.96 hrs, Volume= 1,135 cf

Outflow = 0.58 cfs @ 11.96 hrs, Volume= 1,135 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.58 cfs @ 11.96 hrs, Volume= 1,135 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 636.81' @ 11.96 hrs

Flood Elev= 639.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	636.40'	12.0" Round Culvert
			L= 3.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 636.40' / 636.30' S= 0.0333 '/' Cc= 0.900
			n= 0.012 Flow Δrea= 0.79 sf

Primary OutFlow Max=0.58 cfs @ 11.96 hrs HW=636.81' (Free Discharge) 1=Culvert (Barrel Controls 0.58 cfs @ 2.82 fps)

Pond 11P: CB 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

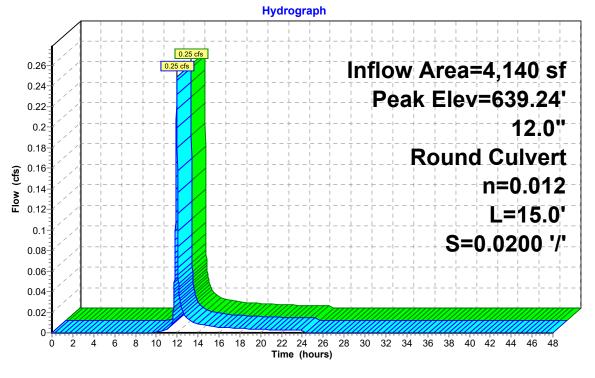
Summary for Pond 12P: CB 2

Inflow Area = 4,140 sf, 22.46% Impervious, Inflow Depth = 1.40" for 2-yr event

Inflow = 0.25 cfs @ 11.96 hrs, Volume= 485 cf

Outflow = 0.25 cfs @ 11.96 hrs, Volume= 485 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.25 cfs @ 11.96 hrs, Volume= 485 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 639.24' @ 11.96 hrs

Flood Elev= 642.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	639.00'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 639.00' / 638.70' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.25 cfs @ 11.96 hrs HW=639.24' (Free Discharge) 1=Culvert (Inlet Controls 0.25 cfs @ 1.68 fps)

Pond 12P: CB 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

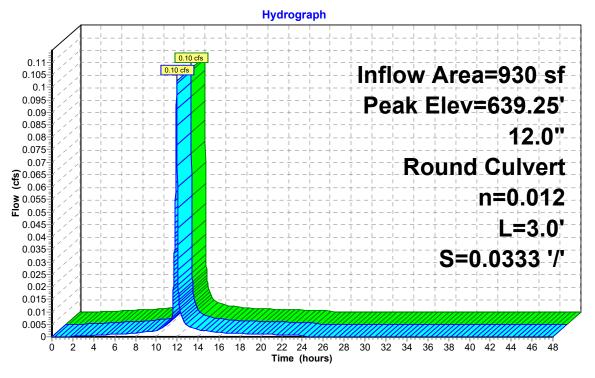
Summary for Pond 13P: CB 3

Inflow Area = 930 sf,100.00% Impervious, Inflow Depth = 3.06" for 2-yr event

Inflow = 0.10 cfs @ 11.96 hrs, Volume= 237 cf

Outflow = 0.10 cfs @ 11.96 hrs, Volume= 237 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.10 cfs @ 11.96 hrs, Volume= 237 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 639.25' @ 11.96 hrs

Flood Elev= 642.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	639.10'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 639.10' / 639.00' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.10 cfs @ 11.96 hrs HW=639.25' (Free Discharge) 1=Culvert (Inlet Controls 0.10 cfs @ 1.33 fps)

Pond 13P: CB 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

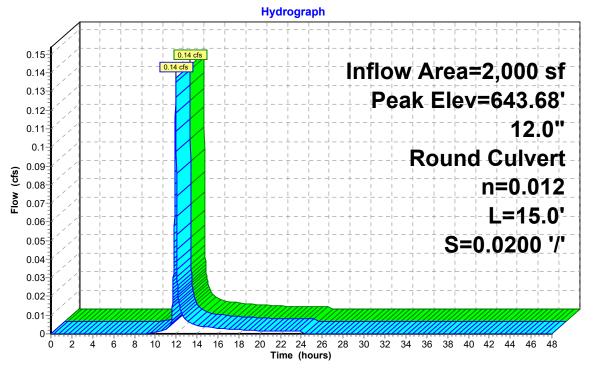
Summary for Pond 14P: CB 4

Inflow Area = 2,000 sf, 34.50% Impervious, Inflow Depth = 1.61" for 2-yr event

Inflow = 0.14 cfs @ 11.96 hrs, Volume= 268 cf

Outflow = 0.14 cfs @ 11.96 hrs, Volume= 268 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.14 cfs @ 11.96 hrs, Volume= 268 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 643.68' @ 11.96 hrs

Flood Elev= 647.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	643.50'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 643.50' / 643.20' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.14 cfs @ 11.96 hrs HW=643.68' (Free Discharge) 1=Culvert (Inlet Controls 0.14 cfs @ 1.44 fps)

Pond 14P: CB 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 15P: CB 5

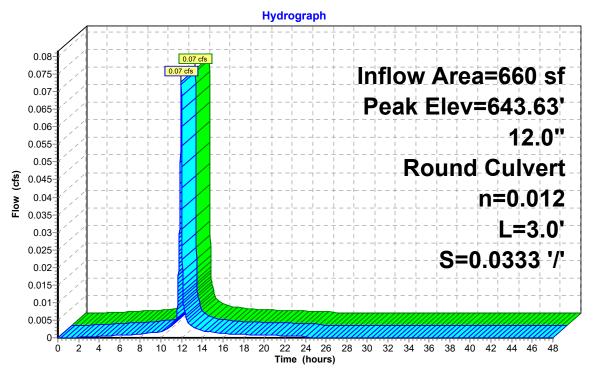
Inflow Area = 660 sf,100.00% Impervious, Inflow Depth = 3.06" for 2-yr event

Inflow = 0.07 cfs @ 11.96 hrs, Volume= 168 cf

Outflow = 0.07 cfs @ 11.96 hrs, Volume= 168 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.07 cfs @ 11.96 hrs, Volume= 168 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.63' @ 11.96 hrs

Flood Elev= 647.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	643.50'	12.0" Round Culvert
			L= 3.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 643.50' / 643.40' S= 0.0333 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.07 cfs @ 11.96 hrs HW=643.63' (Free Discharge) 1=Culvert (Inlet Controls 0.07 cfs @ 1.22 fps)

Pond 15P: CB 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

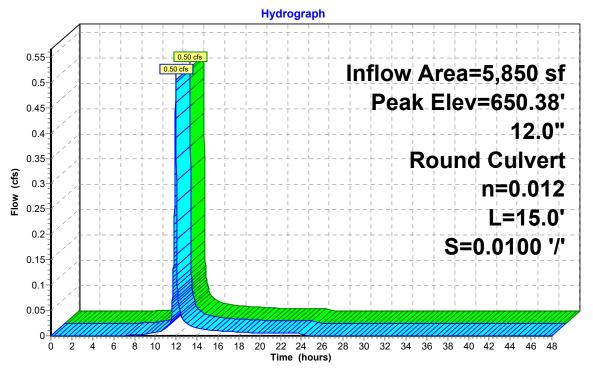
Summary for Pond 16P: CB 6

Inflow Area = 5,850 sf, 56.41% Impervious, Inflow Depth = 2.08" for 2-yr event

Inflow = 0.50 cfs @ 11.96 hrs, Volume= 1,013 cf

Outflow = 0.50 cfs @ 11.96 hrs, Volume= 1,013 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.50 cfs @ 11.96 hrs, Volume= 1,013 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 650.38' @ 11.96 hrs

Flood Elev= 651.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.00'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 650.00' / 649.85' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.50 cfs @ 11.96 hrs HW=650.38' (Free Discharge) 1=Culvert (Barrel Controls 0.50 cfs @ 2.69 fps)

Pond 16P: CB 6

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

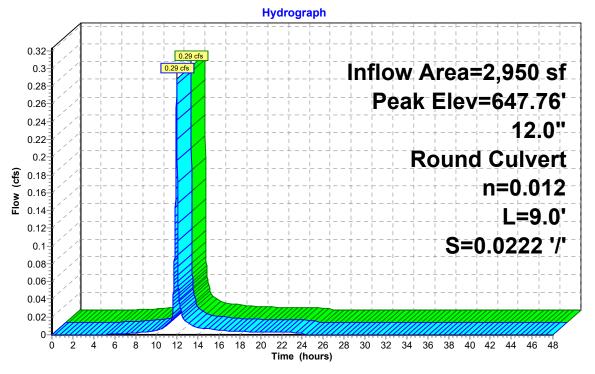
Summary for Pond 17P: CB 7

Inflow Area = 2,950 sf, 74.92% Impervious, Inflow Depth = 2.44" for 2-yr event

Inflow = 0.29 cfs @ 11.96 hrs, Volume= 599 cf

Outflow = 0.29 cfs @ 11.96 hrs, Volume= 599 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.29 cfs @ 11.96 hrs, Volume= 599 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 647.76' @ 11.96 hrs

Flood Elev= 651.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	647.50'	12.0" Round Culvert
			L= 9.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 647.50' / 647.30' S= 0.0222 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.29 cfs @ 11.96 hrs HW=647.76' (Free Discharge) 1=Culvert (Inlet Controls 0.29 cfs @ 1.74 fps)

Pond 17P: CB 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 18P: CB 8

[58] Hint: Peaked 0.28' above defined flood level

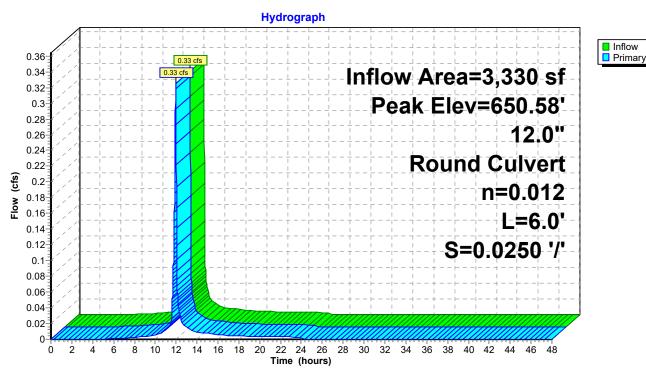
Inflow Area = 3,330 sf, 75.98% Impervious, Inflow Depth = 2.44" for 2-yr event

Inflow = 0.33 cfs @ 11.96 hrs, Volume= 676 cf

Outflow = 0.33 cfs @ 11.96 hrs, Volume= 676 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.33 cfs @ 11.96 hrs, Volume= 676 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.58' @ 11.96 hrs

Flood Elev= 650.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.30'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.30' / 650.15' S= 0.0250 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.32 cfs @ 11.96 hrs HW=650.58' (Free Discharge) 1=Culvert (Inlet Controls 0.32 cfs @ 1.80 fps)

Pond 18P: CB 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 19P: CB 9

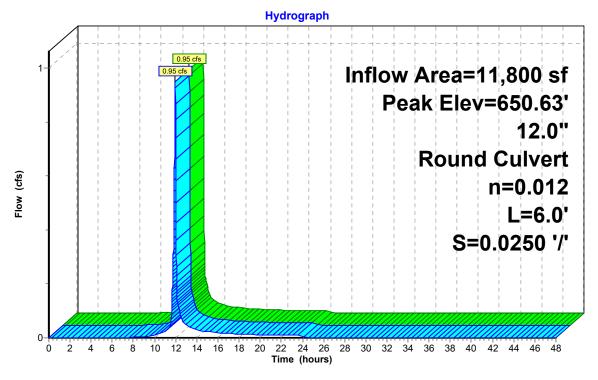
Inflow Area = 11,800 sf, 50.17% Impervious, Inflow Depth = 1.91" for 2-yr event

Inflow = 0.95 cfs @ 11.96 hrs, Volume= 1,882 cf

Outflow = 0.95 cfs @ 11.96 hrs, Volume= 1,882 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.95 cfs @ 11.96 hrs, Volume= 1,882 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.63' @ 11.96 hrs

Flood Elev= 653.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.10'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.10' / 649.95' S= 0.0250 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.95 cfs @ 11.96 hrs HW=650.63' (Free Discharge) 1=Culvert (Barrel Controls 0.95 cfs @ 3.27 fps)

Pond 19P: CB 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 40P: HDS Unit

[79] Warning: Submerged Pond 69P Primary device # 1 INLET by 0.42'

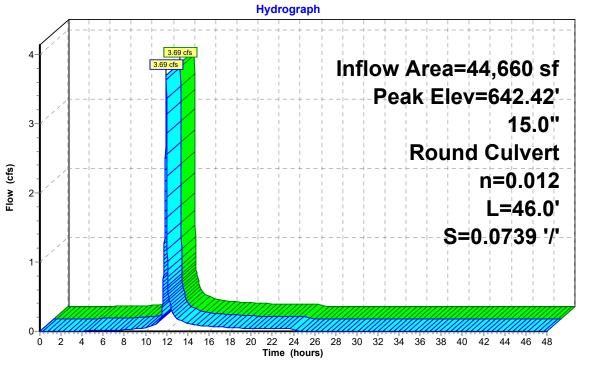
Inflow Area = 44,660 sf, 54.46% Impervious, Inflow Depth = 2.07" for 2-yr event

Inflow = 3.69 cfs @ 11.96 hrs, Volume= 7,701 cf

Outflow = 3.69 cfs @ 11.96 hrs, Volume= 7,701 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.69 cfs @ 11.96 hrs, Volume= 7,701 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 642.42' @ 11.96 hrs

Flood Elev= 653.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	641.40'	15.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 641.40' / 638.00' S= 0.0739 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=3.70 cfs @ 11.96 hrs HW=642.42' (Free Discharge) 1=Culvert (Inlet Controls 3.70 cfs @ 3.44 fps)

Pond 40P: HDS Unit

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 50P: WQB

[79] Warning: Submerged Pond 40P Primary device # 1 OUTLET by 1.41'

Inflow Area = 79,190 sf, 30.71% Impervious, Inflow Depth = 1.65" for 2-yr event

Inflow 5.29 cfs @ 11.96 hrs, Volume= = 10,859 cf

0.21 cfs @ 13.55 hrs, Volume= 0.21 cfs @ 13.55 hrs, Volume= Outflow = 6,480 cf, Atten= 96%, Lag= 95.4 min

Primary 6.480 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 639.41' @ 13.55 hrs Surf.Area= 5,779 sf Storage= 6,531 cf

Flood Elev= 644.00' Surf.Area= 14,157 sf Storage= 51,826 cf

Plug-Flow detention time= 398.1 min calculated for 6,480 cf (60% of inflow)

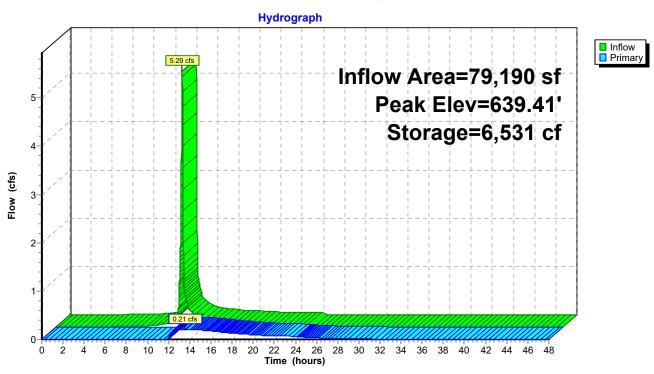
Income Accel Otensons Otensons Description

Center-of-Mass det. time= 279.3 min (1,093.8 - 814.5)

Volume	Inve	<u>ert Avail</u>	.Storage	Storage Description	on		
#1	638.0	00' 5	51,826 cf	Custom Stage Da	ata (Irregular) Liste	d below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
638.0 640.0)0)0	3,553 6,861	532.6 570.3	0 10,234	0 10,234	3,553 7,041	
642.0 644.0		10,396 14,157	608.0 645.7	17,135 24,456	27,369 51,826	10,767 14,732	
Device	Routing	ln۱	ert Outle	et Devices			
#1	Primary	638.	L= 9 Inlet	" Round Culvert 0.0' CPP, square / Outlet Invert= 63 .012, Flow Area= 0	8.00' / 637.10' S=	e= 0.500 0.0100 '/' Cc= 0.900	
#2 #3	Device 1 Device 1		.00' 4.0" .15' 6.0' Head	Vert. Orifice/Grate	e C= 0.600 th Broad-Crested 0.60 0.80 1.00	Rectangular Weir	

Primary OutFlow Max=0.21 cfs @ 13.55 hrs HW=639.41' (Free Discharge)

-1=Culvert (Passes 0.21 cfs of 3.61 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.21 cfs @ 2.39 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

076491 Nichols Townhouses

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Pond 50P: WQB

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 61P: DMH 1

[79] Warning: Submerged Pond 62P Primary device # 1 OUTLET by 0.46'

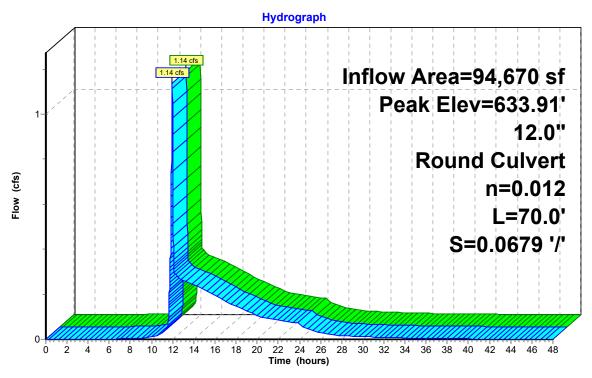
Inflow Area = 94,670 sf, 32.50% Impervious, Inflow Depth > 1.11" for 2-yr event

Inflow = 1.14 cfs @ 11.96 hrs, Volume= 8,774 cf

Outflow = 1.14 cfs @ 11.96 hrs, Volume= 8,774 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.14 cfs @ 11.96 hrs, Volume= 8,774 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 633.91' @ 11.96 hrs

Flood Elev= 639.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	633.35'	12.0" Round Culvert L= 70.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 633.35' / 628.60' S= 0.0679 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=1.13 cfs @ 11.96 hrs HW=633.90' (Free Discharge) 1=Culvert (Inlet Controls 1.13 cfs @ 2.54 fps)

Pond 61P: DMH 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 62P: DMH 2

[79] Warning: Submerged Pond 63P Primary device # 1 OUTLET by 0.46'

Inflow Area = 94,670 sf, 32.50% Impervious, Inflow Depth > 1.11" for 2-yr event

Inflow = 1.14 cfs @ 11.96 hrs, Volume= 8,774 cf

Outflow = 1.14 cfs @ 11.96 hrs, Volume= 8,774 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.14 cfs @ 11.96 hrs, Volume= 8,774 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Peak Elev= 635.01' @ 11.96 hrs

Flood Elev= 640.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	634.45'	12.0" Round Culvert
			L= 100.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 634.45' / 633.45' S= 0.0100 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=1.14 cfs @ 11.96 hrs HW=635.01' (Free Discharge) 1=Culvert (Inlet Controls 1.14 cfs @ 2.54 fps)

Pond 62P: DMH 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 63P: DMH 3

[79] Warning: Submerged Pond 64P Primary device # 1 OUTLET by 0.27'

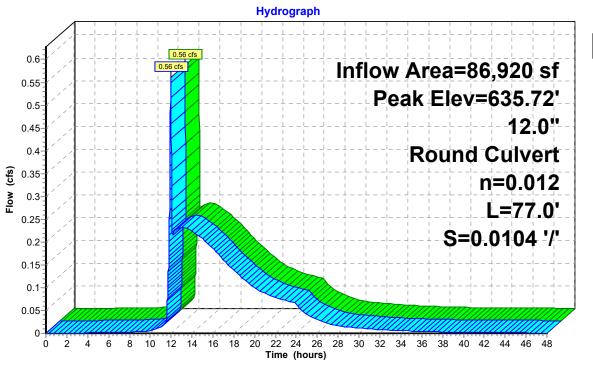
Inflow Area = 86,920 sf, 31.67% Impervious, Inflow Depth > 1.05" for 2-yr event

Inflow = 0.56 cfs @ 11.96 hrs, Volume= 7,639 cf

Outflow = 0.56 cfs @ 11.96 hrs, Volume= 7,639 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.56 cfs @ 11.96 hrs, Volume= 7,639 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 635.72' @ 11.96 hrs

Flood Elev= 642.70'

Device	Routing	Invert	Outlet Devices
#1	Primary	635.35'	12.0" Round Culvert L= 77.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 635.35' / 634.55' S= 0.0104 '/' Cc= 0.900 n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.56 cfs @ 11.96 hrs HW=635.72' (Free Discharge) 1=Culvert (Inlet Controls 0.56 cfs @ 2.08 fps)

Pond 63P: DMH 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 64P: DMH 4

[79] Warning: Submerged Pond 65P Primary device # 1 OUTLET by 0.13'

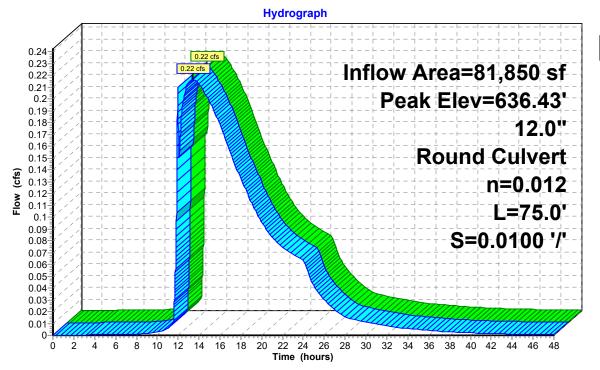
Inflow Area = 81,850 sf, 31.36% Impervious, Inflow Depth > 1.01" for 2-yr event

Inflow = 0.22 cfs @ 13.41 hrs, Volume= 6,917 cf

Outflow = 0.22 cfs @ 13.41 hrs, Volume= 6,917 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.22 cfs @ 13.41 hrs, Volume= 6,917 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 636.43' @ 13.41 hrs

Flood Elev= 647.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	636.20'	12.0" Round Culvert L= 75.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 636.20' / 635.45' S= 0.0100 '/' Cc= 0.900
#1	Primary	636.20	L= 75.0' CPP, square edge headwall, Ke= 0.500

Primary OutFlow Max=0.22 cfs @ 13.41 hrs HW=636.43' (Free Discharge)
1=Culvert (Inlet Controls 0.22 cfs @ 1.62 fps)

Pond 64P: DMH 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 65P: DMH 5

[79] Warning: Submerged Pond 50P Primary device # 1 OUTLET by 0.11'

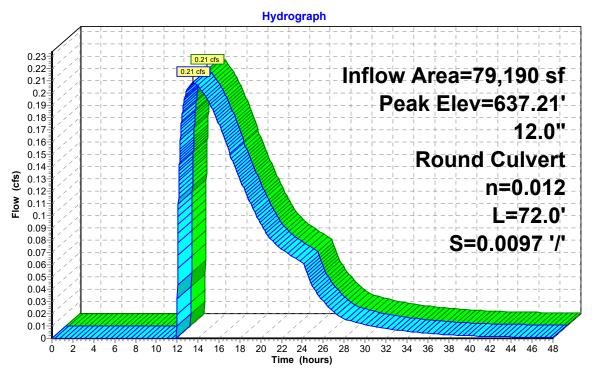
Inflow Area = 79,190 sf, 30.71% Impervious, Inflow Depth > 0.98" for 2-yr event

Inflow = 0.21 cfs @ 13.55 hrs, Volume= 6,480 cf

Outflow = 0.21 cfs @ 13.55 hrs, Volume= 6,480 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.21 cfs @ 13.55 hrs, Volume= 6,480 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 637.21' @ 13.55 hrs

Flood Elev= 651.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	637.00'	12.0" Round Culvert L= 72.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 637.00' / 636.30' S= 0.0097 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.19 cfs @ 13.55 hrs HW=637.21' (Free Discharge) 1=Culvert (Inlet Controls 0.19 cfs @ 1.56 fps)

Pond 65P: DMH 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 66P: DMH 6

[79] Warning: Submerged Pond 17P Primary device # 1 INLET by 0.12'

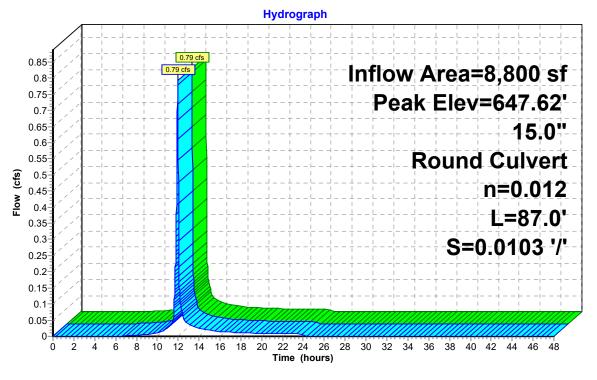
Inflow Area = 8,800 sf, 62.61% Impervious, Inflow Depth = 2.20" for 2-yr event

Inflow = 0.79 cfs @ 11.96 hrs, Volume= 1,612 cf

Outflow = 0.79 cfs @ 11.96 hrs, Volume= 1,612 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.79 cfs @ 11.96 hrs, Volume= 1,612 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 647.62' @ 11.96 hrs

Flood Elev= 651.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	647.20'	15.0" Round Culvert L= 87.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 647.20' / 646.30' S= 0.0103 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=0.79 cfs @ 11.96 hrs HW=647.62' (Free Discharge)
1=Culvert (Inlet Controls 0.79 cfs @ 2.20 fps)

Pond 66P: DMH 6

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 67P: DMH 7

[79] Warning: Submerged Pond 66P Primary device # 1 OUTLET by 0.40'

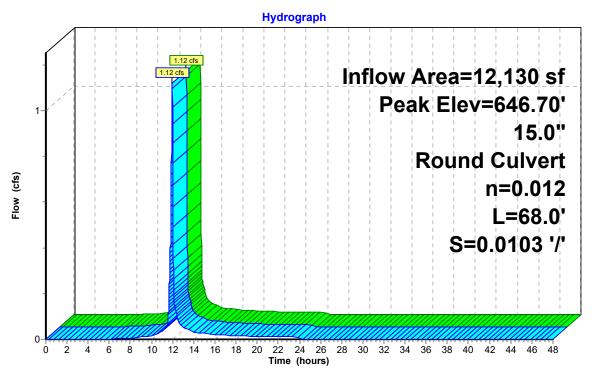
Inflow Area = 12,130 sf, 66.28% Impervious, Inflow Depth = 2.26" for 2-yr event

Inflow = 1.12 cfs @ 11.96 hrs, Volume= 2,288 cf

Outflow = 1.12 cfs @ 11.96 hrs, Volume= 2,288 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.12 cfs @ 11.96 hrs, Volume= 2,288 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 646.70' @ 11.96 hrs

Flood Elev= 654.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	646.20'	15.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 646.20' / 645.50' S= 0.0103 '/' Cc= 0.900 n= 0.012 Flow Area= 1.23 sf

Primary OutFlow Max=1.11 cfs @ 11.96 hrs HW=646.70' (Free Discharge)
1=Culvert (Inlet Controls 1.11 cfs @ 2.41 fps)

Pond 67P: DMH 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 68P: DMH 8

[79] Warning: Submerged Pond 67P Primary device # 1 OUTLET by 0.64'

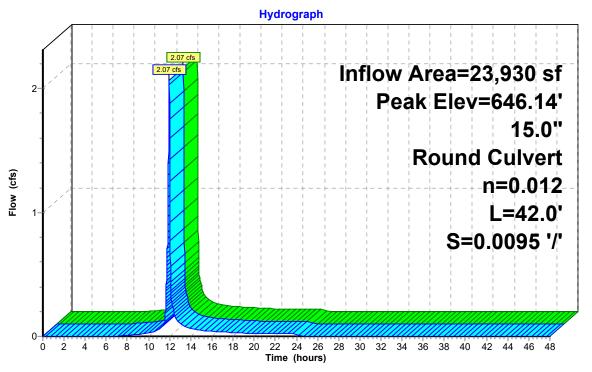
Inflow Area = 23,930 sf, 58.34% Impervious, Inflow Depth = 2.09" for 2-yr event

Inflow = 2.07 cfs @ 11.96 hrs, Volume= 4,170 cf

Outflow = 2.07 cfs @ 11.96 hrs, Volume= 4,170 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.07 cfs @ 11.96 hrs, Volume= 4,170 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 646.14' @ 11.96 hrs

Flood Elev= 654.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	645.40'	15.0" Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 645.40' / 645.00' S= 0.0095 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=2.06 cfs @ 11.96 hrs HW=646.14' (Free Discharge) 1=Culvert (Barrel Controls 2.06 cfs @ 3.94 fps)

Pond 68P: DMH 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 69P: DMH 9

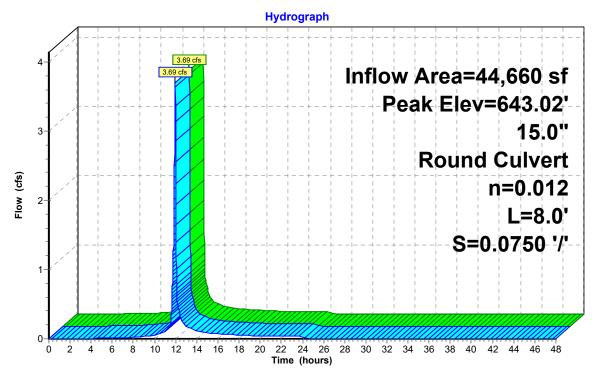
Inflow Area = 44,660 sf, 54.46% Impervious, Inflow Depth = 2.07" for 2-yr event

Inflow = 3.69 cfs @ 11.96 hrs, Volume= 7,701 cf

Outflow = 3.69 cfs @ 11.96 hrs, Volume= 7,701 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.69 cfs @ 11.96 hrs, Volume= 7,701 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.02' @ 11.96 hrs

Flood Elev= 654.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	642.00'	15.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 642.00' / 641.40' S= 0.0750 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=3.70 cfs @ 11.96 hrs HW=643.02' (Free Discharge) 1=Culvert (Inlet Controls 3.70 cfs @ 3.44 fps)

Pond 69P: DMH 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 70P: DMH 10

[79] Warning: Submerged Pond 71P Primary device # 1 OUTLET by 0.59'

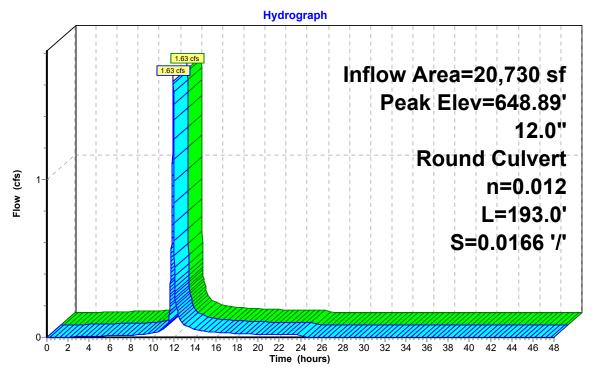
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 2.04" for 2-yr event

Inflow = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf

Outflow = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 648.89' @ 11.96 hrs

Flood Elev= 655.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	648.20'	12.0" Round Culvert L= 193.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 648.20' / 645.00' S= 0.0166 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=1.63 cfs @ 11.96 hrs HW=648.89' (Free Discharge) 1=Culvert (Inlet Controls 1.63 cfs @ 2.82 fps)

Pond 70P: DMH 10

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 71P: DMH 11

[79] Warning: Submerged Pond 83P Primary device # 1 OUTLET by 0.59'

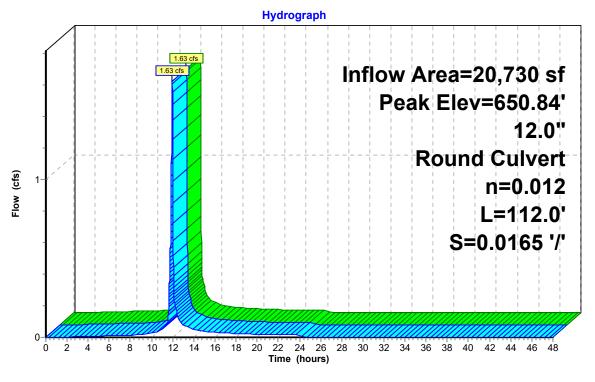
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 2.04" for 2-yr event

Inflow = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf

Outflow = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.84' @ 11.96 hrs

Flood Elev= 655.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.15'	12.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 650.15' / 648.30' S= 0.0165 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=1.63 cfs @ 11.96 hrs HW=650.84' (Free Discharge) 1=Culvert (Inlet Controls 1.63 cfs @ 2.82 fps)

Pond 71P: DMH 11

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

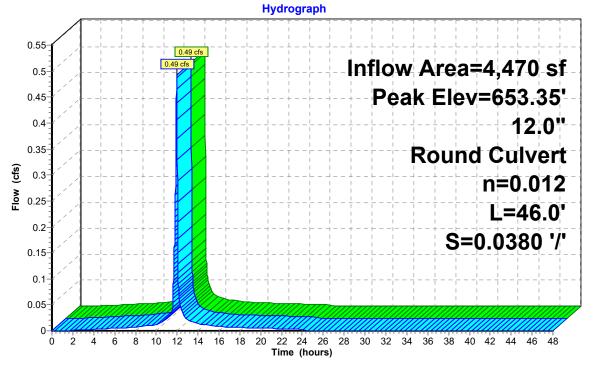
Summary for Pond 81P: YD 1

Inflow Area = 4,470 sf,100.00% Impervious, Inflow Depth = 3.06" for 2-yr event

Inflow = 0.49 cfs @ 11.96 hrs, Volume= 1,139 cf

Outflow = 0.49 cfs @ 11.96 hrs, Volume= 1,139 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.49 cfs @ 11.96 hrs, Volume= 1,139 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 653.35' @ 11.96 hrs

Flood Elev= 656.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	653.00'	12.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 653.00' / 651.25' S= 0.0380 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.49 cfs @ 11.96 hrs HW=653.35' (Free Discharge) 1=Culvert (Inlet Controls 0.49 cfs @ 2.01 fps)

Pond 81P: YD 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 82P: YD 2

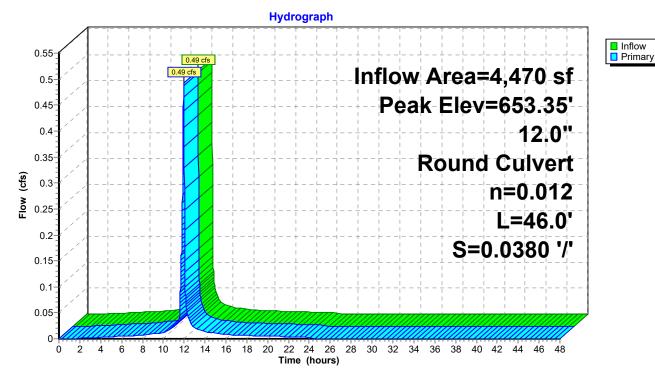
Inflow Area = 4,470 sf,100.00% Impervious, Inflow Depth = 3.06" for 2-yr event

Inflow = 0.49 cfs @ 11.96 hrs, Volume= 1,139 cf

Outflow = 0.49 cfs @ 11.96 hrs, Volume= 1,139 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.49 cfs @ 11.96 hrs, Volume= 1,139 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 653.35' @ 11.96 hrs

Flood Elev= 656.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	653.00'	12.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 653.00' / 651.25' S= 0.0380 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.49 cfs @ 11.96 hrs HW=653.35' (Free Discharge) 1=Culvert (Inlet Controls 0.49 cfs @ 2.01 fps)

Pond 82P: YD 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 83P: YD 3

[79] Warning: Submerged Pond 81P Primary device # 1 OUTLET by 0.69' [79] Warning: Submerged Pond 82P Primary device # 1 OUTLET by 0.69'

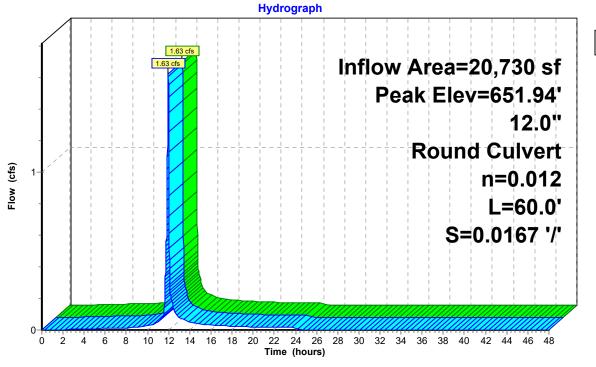
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 2.04" for 2-yr event

Inflow = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf

Outflow = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.63 cfs @ 11.96 hrs, Volume= 3,532 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 651.94' @ 11.96 hrs

Flood Elev= 654.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	651.25'	12.0" Round Culvert L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 651.25' / 650.25' S= 0.0167 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=1.63 cfs @ 11.96 hrs HW=651.94' (Free Discharge) 1=Culvert (Inlet Controls 1.63 cfs @ 2.82 fps)

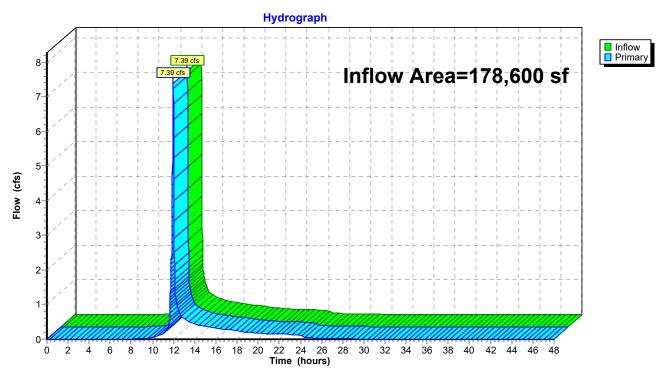
Pond 83P: YD 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Link 10L: Center Road


Inflow Area = 178,600 sf, 37.73% Impervious, Inflow Depth > 1.42" for 2-yr event

Inflow = 7.39 cfs @ 11.96 hrs, Volume= 21,069 cf

Primary = 7.39 cfs @ 11.96 hrs, Volume= 21,069 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Link 10L: Center Road

Proposed Conditions Type II 24-hr 10-yr Rainfall=5.08" Printed 5/23/2022

Page 50

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: Proposed to Center	Runoff Area=83,930 sf 43.63% Impervious Runoff Depth=3.34" Tc=5.0 min CN=84 Runoff=11.57 cfs 23,386 cf
Subcatchment11S: Proposed to CB 1	Runoff Area=7,750 sf 41.81% Impervious Runoff Depth=3.34" Tc=5.0 min CN=84 Runoff=1.07 cfs 2,159 cf
Subcatchment12S: Proposed to CB 2	Runoff Area=4,140 sf 22.46% Impervious Runoff Depth=2.87" Tc=5.0 min CN=79 Runoff=0.50 cfs 990 cf
Subcatchment13S: Proposed to CB 3	Runoff Area=930 sf 100.00% Impervious Runoff Depth=4.84" Tc=5.0 min CN=98 Runoff=0.16 cfs 375 cf
Subcatchment14S: Proposed to CB 4	Runoff Area=2,000 sf 34.50% Impervious Runoff Depth=3.15" Tc=5.0 min CN=82 Runoff=0.26 cfs 525 cf
Subcatchment15S: Proposed to CB 5	Runoff Area=660 sf 100.00% Impervious Runoff Depth=4.84" Tc=5.0 min CN=98 Runoff=0.11 cfs 266 cf
Subcatchment16S: Proposed to CB 6	Runoff Area=5,850 sf 56.41% Impervious Runoff Depth=3.74" Tc=5.0 min CN=88 Runoff=0.88 cfs 1,826 cf
Subcatchment17S: Proposed to CB 7	Runoff Area=2,950 sf 74.92% Impervious Runoff Depth=4.17" Tc=5.0 min CN=92 Runoff=0.48 cfs 1,024 cf
Subcatchment18S: Proposed to CB 8	Runoff Area=3,330 sf 75.98% Impervious Runoff Depth=4.17" Tc=5.0 min CN=92 Runoff=0.54 cfs 1,156 cf
Subcatchment19S: Proposed to CB 9	Runoff Area=11,800 sf 50.17% Impervious Runoff Depth=3.54" Tc=5.0 min CN=86 Runoff=1.70 cfs 3,483 cf
Subcatchment20S: Proposed to Northern	Runoff Area=56,570 sf 79.49% Impervious Runoff Depth=4.28" Tc=5.0 min CN=93 Runoff=9.24 cfs 20,160 cf
Subcatchment30S: Proposed to West Flow	Runoff Area=230,400 sf 0.36% Impervious Runoff Depth=2.18" v Length=530' Tc=20.1 min CN=71 Runoff=12.63 cfs 41,801 cf
Subcatchment40S: Proposed to South F	Runoff Area=19,030 sf 0.00% Impervious Runoff Depth=2.26" low Length=255' Tc=16.0 min CN=72 Runoff=1.23 cfs 3,583 cf
Subcatchment50S: Proposed to WQB	Runoff Area=34,530 sf 0.00% Impervious Runoff Depth=2.43" Tc=5.0 min CN=74 Runoff=3.58 cfs 6,987 cf
Subcatchment81S: Proposed to YD 1	Runoff Area=4,470 sf 100.00% Impervious Runoff Depth=4.84" Tc=5.0 min CN=98 Runoff=0.77 cfs 1,804 cf
Subcatchment82S: Proposed to YD 2	Runoff Area=4,470 sf 100.00% Impervious Runoff Depth=4.84" Tc=5.0 min CN=98 Runoff=0.77 cfs 1,804 cf

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Subcatchment83S: Propo	sed to YD 3 Runoff Area=11,790 sf 12.04% Impervious Runoff Depth=2.69" Tc=5.0 min CN=77 Runoff=1.34 cfs 2,643 cf
Pond 11P: CB 1	Peak Elev=636.99' Inflow=1.07 cfs 2,159 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=1.07 cfs 2,159 cf
Pond 12P: CB 2	Peak Elev=639.35' Inflow=0.50 cfs 990 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.50 cfs 990 cf
Pond 13P: CB 3	Peak Elev=639.29' Inflow=0.16 cfs 375 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.16 cfs 375 cf
Pond 14P: CB 4	Peak Elev=643.75' Inflow=0.26 cfs 525 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.26 cfs 525 cf
Pond 15P: CB 5	Peak Elev=643.66' Inflow=0.11 cfs 266 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.11 cfs 266 cf
Pond 16P: CB 6	Peak Elev=650.53' Inflow=0.88 cfs 1,826 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0100'/' Outflow=0.88 cfs 1,826 cf
Pond 17P: CB 7	Peak Elev=647.84' Inflow=0.48 cfs 1,024 cf 12.0" Round Culvert n=0.012 L=9.0' S=0.0222'/' Outflow=0.48 cfs 1,024 cf
Pond 18P: CB 8	Peak Elev=650.67' Inflow=0.54 cfs 1,156 cf 12.0" Round Culvert n=0.012 L=6.0' S=0.0250 '/' Outflow=0.54 cfs 1,156 cf
Pond 19P: CB 9	Peak Elev=650.86' Inflow=1.70 cfs 3,483 cf 12.0" Round Culvert n=0.012 L=6.0' S=0.0250 '/' Outflow=1.70 cfs 3,483 cf
Pond 40P: HDS Unit	Peak Elev=643.22' Inflow=6.47 cfs 13,740 cf 15.0" Round Culvert n=0.012 L=46.0' S=0.0739 '/' Outflow=6.47 cfs 13,740 cf
Pond 50P: WQB	Peak Elev=640.31' Storage=12,412 cf Inflow=10.04 cfs 20,728 cf Outflow=0.45 cfs 16,342 cf
Pond 61P: DMH 1	Peak Elev=634.25' Inflow=2.41 cfs 20,658 cf 12.0" Round Culvert n=0.012 L=70.0' S=0.0679 '/' Outflow=2.41 cfs 20,658 cf
Pond 62P: DMH 2	Peak Elev=635.35' Inflow=2.41 cfs 20,658 cf 12.0" Round Culvert n=0.012 L=100.0' S=0.0100 '/' Outflow=2.41 cfs 20,658 cf
Pond 63P: DMH 3	Peak Elev=635.96' Inflow=1.34 cfs 18,499 cf 12.0" Round Culvert n=0.012 L=77.0' S=0.0104 '/' Outflow=1.34 cfs 18,499 cf
Pond 64P: DMH 4	Peak Elev=636.62' Inflow=0.69 cfs 17,133 cf 12.0" Round Culvert n=0.012 L=75.0' S=0.0100 '/' Outflow=0.69 cfs 17,133 cf
Pond 65P: DMH 5	Peak Elev=637.33' Inflow=0.45 cfs 16,342 cf 12.0" Round Culvert n=0.012 L=72.0' S=0.0097 '/' Outflow=0.45 cfs 16,342 cf

Proposed Conditions
Type II 24-hr 10-yr Rainfall=5.08"
Printed 5/23/2022

Page 52

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Pond 66P: DMH 6	Peak Elev=647.76' Inflow=1.35 cfs 2,850 cf 15.0" Round Culvert n=0.012 L=87.0' S=0.0103 '/' Outflow=1.35 cfs 2,850 cf
Pond 67P: DMH 7	Peak Elev=646.87' Inflow=1.89 cfs 4,007 cf 15.0" Round Culvert n=0.012 L=68.0' S=0.0103 '/' Outflow=1.89 cfs 4,007 cf
Pond 68P: DMH 8	Peak Elev=646.45' Inflow=3.59 cfs 7,489 cf 15.0" Round Culvert n=0.012 L=42.0' S=0.0095 '/' Outflow=3.59 cfs 7,489 cf
Pond 69P: DMH 9	Peak Elev=643.82' Inflow=6.47 cfs 13,740 cf 15.0" Round Culvert n=0.012 L=8.0' S=0.0750 '/' Outflow=6.47 cfs 13,740 cf
Pond 70P: DMH 10	Peak Elev=649.28' Inflow=2.87 cfs 6,251 cf 12.0" Round Culvert n=0.012 L=193.0' S=0.0166 '/' Outflow=2.87 cfs 6,251 cf
Pond 71P: DMH 11	Peak Elev=651.23' Inflow=2.87 cfs 6,251 cf 12.0" Round Culvert n=0.012 L=112.0' S=0.0165 '/' Outflow=2.87 cfs 6,251 cf
Pond 81P: YD 1	Peak Elev=653.44' Inflow=0.77 cfs 1,804 cf 12.0" Round Culvert n=0.012 L=46.0' S=0.0380 '/' Outflow=0.77 cfs 1,804 cf
Pond 82P: YD 2	Peak Elev=653.44' Inflow=0.77 cfs 1,804 cf 12.0" Round Culvert n=0.012 L=46.0' S=0.0380 '/' Outflow=0.77 cfs 1,804 cf
Pond 83P: YD 3	Peak Elev=652.33' Inflow=2.87 cfs 6,251 cf 12.0" Round Culvert n=0.012 L=60.0' S=0.0167 '/' Outflow=2.87 cfs 6,251 cf
Link 10L: Center Road	Inflow=13.97 cfs 44,045 cf Primary=13.97 cfs 44,045 cf

Total Runoff Area = 484,600 sf Runoff Volume = 113,975 cf Average Runoff Depth = 2.82" 76.64% Pervious = 371,420 sf 23.36% Impervious = 113,180 sf

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Subcatchment 10S: Proposed to Center Road

Runoff = 11.57 cfs @ 11.96 hrs, Volume= 23,386 cf, Depth= 3.34"

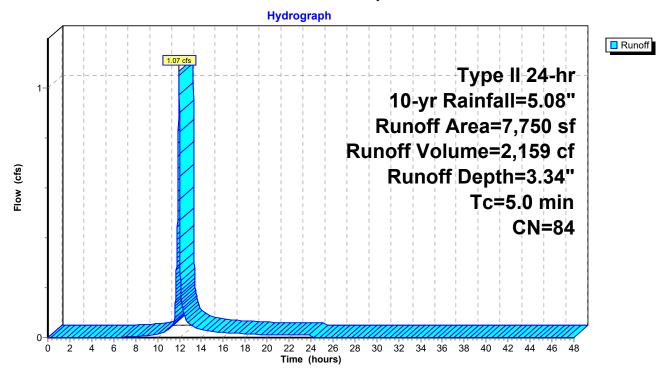
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Aı	rea (sf)	CN	Description				
*		36,620	98	Paved				
		38,010	74	>75% Gras	s cover, Go	ood, HSG C		
		9,300	70	Woods, Good, HSG C				
		83,930	84	34 Weighted Average				
		47,310		56.37% Pervious Area				
		36,620		43.63% Impervious Area				
	_							
	Tc	Length	Slop	,	Capacity	Description		
(r	min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	5.0					Direct Entry,		

Subcatchment 10S: Proposed to Center Road

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 11S: Proposed to CB 1

Runoff = 1.07 cfs @ 11.96 hrs, Volume= 2,159 cf, Depth= 3.34"

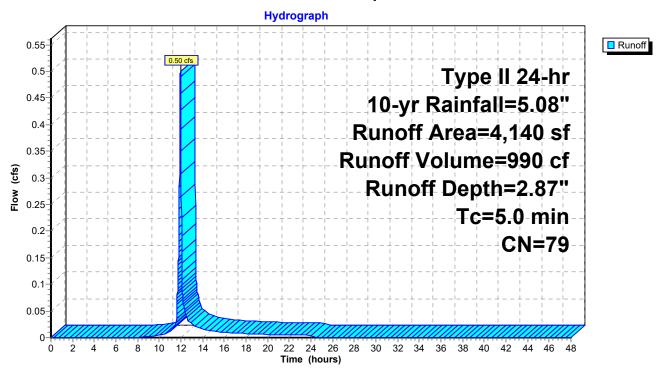
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

_	Α	rea (sf)	CN	Description						
*		3,240	98	Paved						
		4,510	74	>75% Grass cover, Good, HSG C						
		7,750	84	Veighted Average						
		4,510		58.19% Pervious Area						
		3,240		41.81% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·				
	5.0					Direct Entry.				

Subcatchment 11S: Proposed to CB 1

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 12S: Proposed to CB 2

Runoff = 0.50 cfs @ 11.96 hrs, Volume= 990 cf, Depth= 2.87"

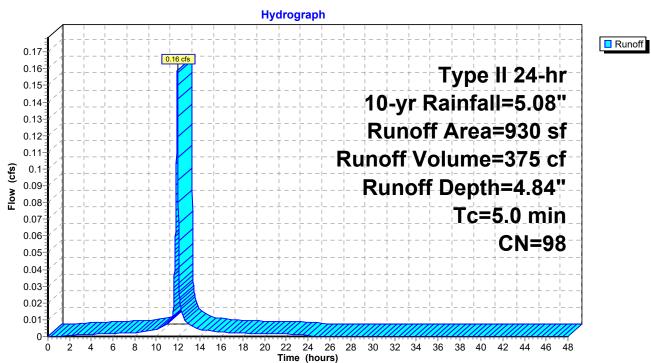
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Α	rea (sf)	CN	Description						
*		930	98	Paved						
		3,210	74	>75% Grass cover, Good, HSG C						
		4,140	79	Veighted Average						
		3,210		77.54% Pervious Area						
		930		22.46% Imp	pervious Ar	vrea				
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 12S: Proposed to CB 2

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 13S: Proposed to CB 3

Runoff = 0.16 cfs @ 11.96 hrs, Volume= 375 cf, Depth= 4.84"

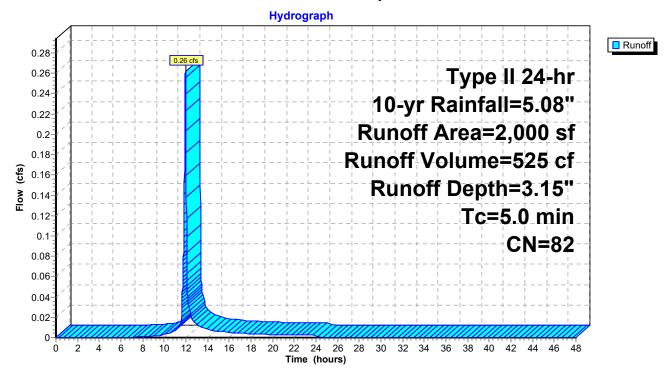
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Α	rea (sf)	CN [Description		
*		930	98 F	Paved		
		930	1	00.00% In	npervious A	Area
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 13S: Proposed to CB 3

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 14S: Proposed to CB 4

Runoff = 0.26 cfs @ 11.96 hrs, Volume= 525 cf, Depth= 3.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

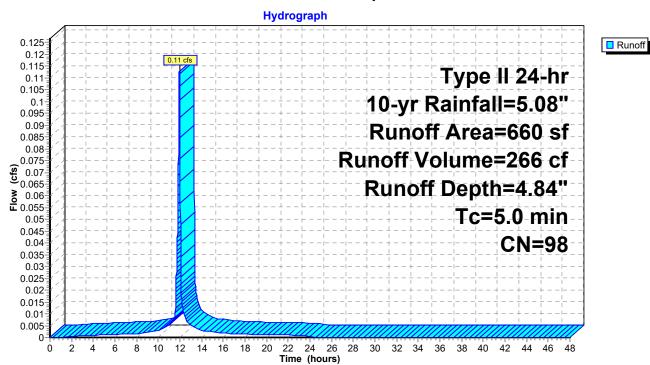
_	Α	rea (sf)	CN	Description						
*		690	98	Paved						
_		1,310	74	>75% Grass cover, Good, HSG C						
		2,000	82	Weighted A	Veighted Average					
		1,310		65.50% Pervious Area						
		690		34.50% Imp	pervious Ar	rea				
	Тс	Length	Slope	e Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 14S: Proposed to CB 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 15S: Proposed to CB 5

Runoff = 0.11 cfs @ 11.96 hrs, Volume= 266 cf, Depth= 4.84"

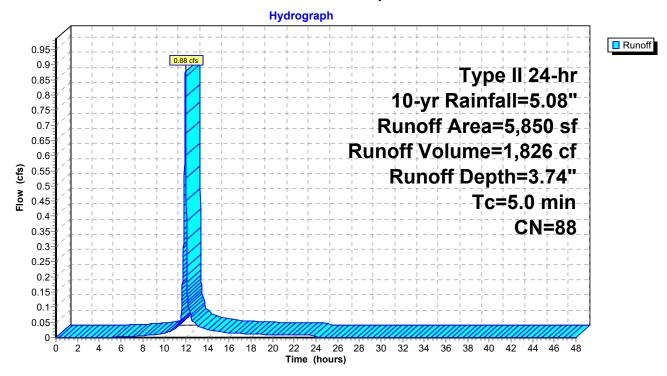
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

_	Α	rea (sf)	CN I	Description						
*		660	98 I	Paved						
_		660		100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry,				

Subcatchment 15S: Proposed to CB 5

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 16S: Proposed to CB 6

Runoff = 0.88 cfs @ 11.96 hrs, Volume= 1,826 cf, Depth= 3.74"

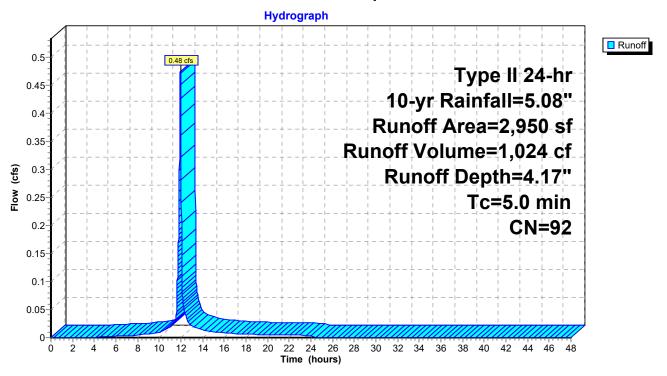
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

_	Α	rea (sf)	CN	Description						
*		3,300	98	Paved						
_		2,550	74	>75% Grass cover, Good, HSG C						
_		5,850	88	Veighted Average						
		2,550		43.59% Pervious Area						
		3,300		56.41% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 16S: Proposed to CB 6

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 17S: Proposed to CB 7

Runoff = 0.48 cfs @ 11.96 hrs, Volume= 1,024 cf, Depth= 4.17"

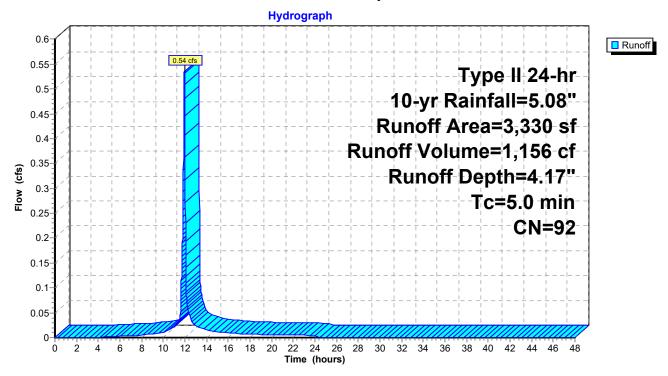
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

_	Α	rea (sf)	CN	Description						
*		2,210	98	Paved						
_		740	74	>75% Grass cover, Good, HSG C						
_		2,950	92	Weighted A	Veighted Average					
		740		25.08% Pervious Area						
		2,210		74.92% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
_	5.0					Direct Entry.				

Subcatchment 17S: Proposed to CB 7

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 18S: Proposed to CB 8

Runoff = 0.54 cfs @ 11.96 hrs, Volume= 1,156 cf, Depth= 4.17"

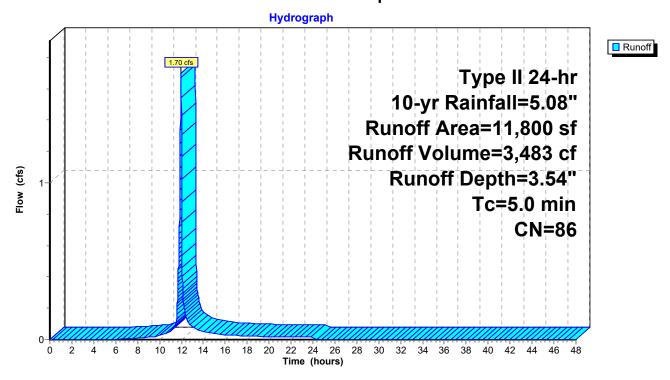
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

_	Α	rea (sf)	CN	Description						
*		2,530	98	Paved						
_		800	74	>75% Grass cover, Good, HSG C						
		3,330	92	Weighted Average						
		800		24.02% Pervious Area						
		2,530		75.98% Imp	rea					
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
	(min)	(feet)	(ft/ft	,	(cfs)	•				
	5.0		-			Direct Entry.				

Subcatchment 18S: Proposed to CB 8

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 19S: Proposed to CB 9

Runoff = 1.70 cfs @ 11.96 hrs, Volume= 3,483 cf, Depth= 3.54"

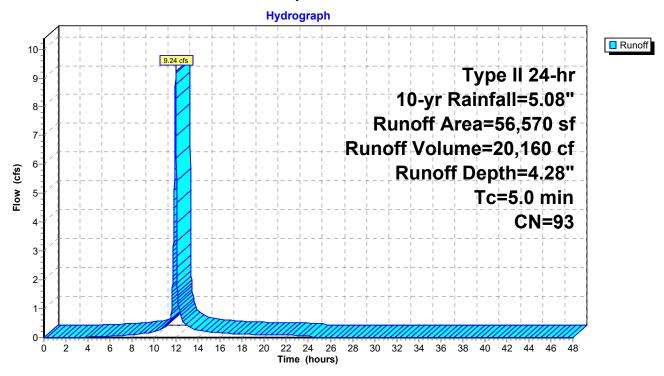
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

_	Α	rea (sf)	CN	Description					
*		5,920	98	Paved					
_		5,880	74	>75% Grass cover, Good, HSG C					
_		11,800	86	Weighted A	Veighted Average				
		5,880		49.83% Pervious Area					
		5,920		50.17% Imp	rea				
	Tc	Length	Slope	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft	,	(cfs)	Boomphon			
-	5.0	((1010	, (.3000)	(0.0)	Direct Entry.			

Subcatchment 19S: Proposed to CB 9

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 20S: Proposed to Northern Detention Basin

Runoff = 9.24 cfs @ 11.96 hrs, Volume= 20,160 cf, Depth= 4.28"

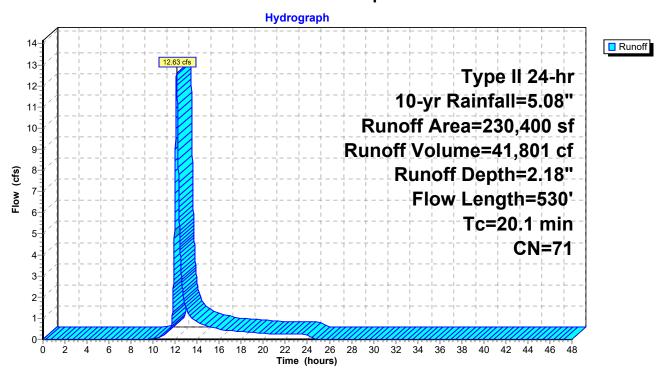
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Ar	rea (sf)	CN	Description					
*		44,970	98	Paved					
		11,600	74	>75% Grass cover, Good, HSG C					
_		56,570	93 Weighted Average						
		11,600							
	•	44,970		79.49% Imp	pervious Ar	Area			
	Тс	Length	Slope	e Velocity	Capacity	/ Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.0					Direct Entry.			

Subcatchment 20S: Proposed to Northern Detention Basin

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 30S: Proposed to West

Runoff = 12.63 cfs @ 12.13 hrs, Volume= 41,801 cf, Depth= 2.18"

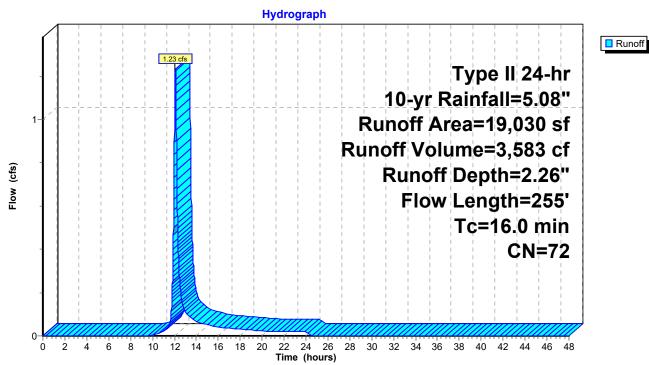
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Aı	rea (sf)	CN E	Description					
*		820	820 98 Paved						
		71,890	74 >	>75% Grass cover, Good, HSG C					
	157,690 70 Woods, Good, HSG C								
	230,400 71 Weighted Average				verage				
	2	29,580	g	9.64% Per	vious Area				
820 0.36% Impervious Area					ervious Are	a			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	12.4	75	0.0060	0.10		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.29"			
	5.6	165	0.0050	0.49		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	2.1	290	0.1070	2.29		Shallow Concentrated Flow,			
_						Short Grass Pasture Kv= 7.0 fps			
	20.1	530	Total						

Subcatchment 30S: Proposed to West

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 40S: Proposed to South

Runoff = 1.23 cfs @ 12.09 hrs, Volume= 3,583 cf, Depth= 2.26"

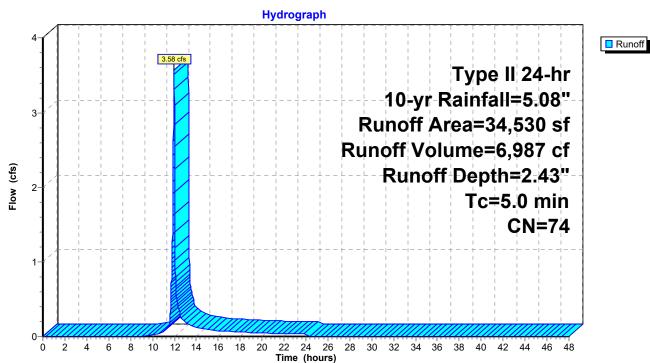
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	rea (sf)	CN E	Description						
	10,460	74 >	74 >75% Grass cover, Good, HSG C						
	8,570	70 V	Voods, Go	od, HSG C					
	19,030	72 Weighted Average							
	19,030	1	00.00% Pe	ervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.4	75	0.0060	0.10		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.29"				
2.4	100	0.0100	0.70		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
1.2	80	0.0250	1.11		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
16.0	255	Total							

Subcatchment 40S: Proposed to South

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 50S: Proposed to WQB

Runoff = 3.58 cfs @ 11.96 hrs, Volume= 6,987 cf, Depth= 2.43"

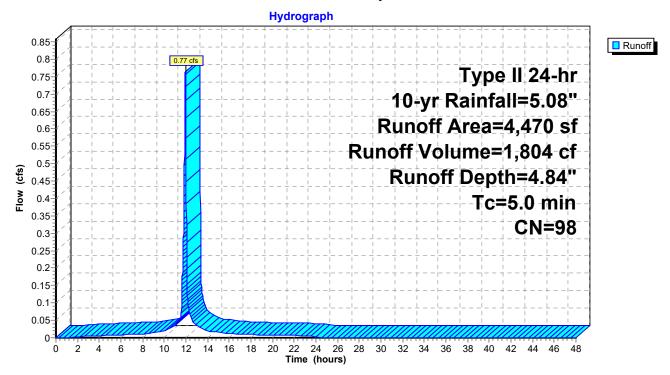
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

A	rea (sf)	CN [Description		
	34,530	74 >	75% Gras	s cover, Go	ood, HSG C
	34,530	1	00.00% Pe	ervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 50S: Proposed to WQB

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 81S: Proposed to YD 1

Runoff = 0.77 cfs @ 11.96 hrs, Volume= 1,804 cf, Depth= 4.84"

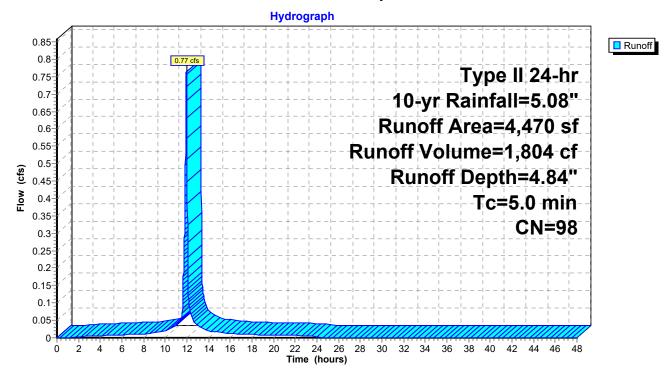
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Α	rea (sf)	CN	Description		
*		3,200	98	Roof		
*		1,270	98	Paved		
		4,470 4,470	98	Weighted A 100.00% In	•	Area
	Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
	5.0	-				Direct Entry,

Subcatchment 81S: Proposed to YD 1

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 82S: Proposed to YD 2

Runoff = 0.77 cfs @ 11.96 hrs, Volume= 1,804 cf, Depth= 4.84"

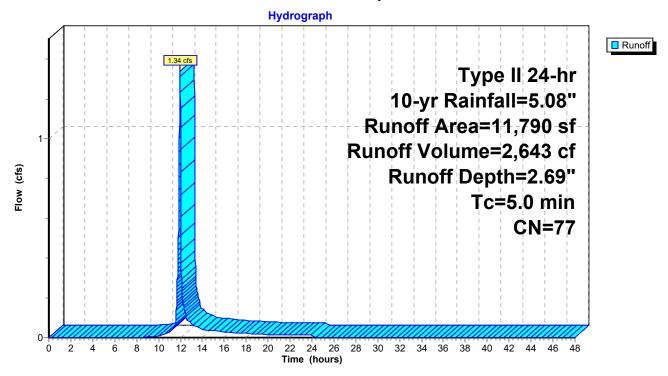
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

_	Α	rea (sf)	CN	Description		
*		3,200	98	Roof		
*		1,270	98	Paved		
		4,470 4,470	98	Weighted A 100.00% In		Area
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
	5.0					Direct Entry

Subcatchment 82S: Proposed to YD 2

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 83S: Proposed to YD 3

Runoff = 1.34 cfs @ 11.96 hrs, Volume= 2,643 cf, Depth= 2.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10-yr Rainfall=5.08"

	Area (sf)	CN	Description				
*	1,420	98	Paved	Paved			
_	10,370	74	>75% Gras	s cover, Go	Good, HSG C		
	11,790	77	Weighted A	verage			
	10,370		87.96% Pei	rvious Area	a		
	1,420		12.04% Imp	pervious Ar	rea		
	Tc Length	n Slo	pe Velocity	Capacity	/ Description		
_	(min) (feet)) (ft/	ft) (ft/sec)	(cfs)			
	5.0				Direct Entry.		

Subcatchment 83S: Proposed to YD 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 11P: CB 1

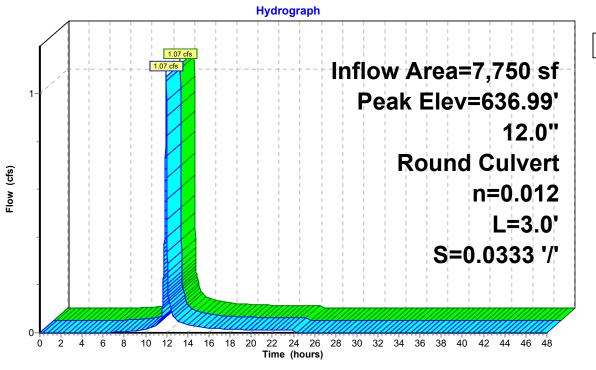
Inflow Area = 7,750 sf, 41.81% Impervious, Inflow Depth = 3.34" for 10-yr event

Inflow = 1.07 cfs @ 11.96 hrs, Volume= 2,159 cf

Outflow = 1.07 cfs @ 11.96 hrs, Volume= 2,159 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.07 cfs @ 11.96 hrs, Volume= 2,159 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 636.99' @ 11.96 hrs

Flood Elev= 639.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	636.40'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 636.40' / 636.30' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.07 cfs @ 11.96 hrs HW=636.99' (Free Discharge) 1=Culvert (Barrel Controls 1.07 cfs @ 3.17 fps)

Pond 11P: CB 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 12P: CB 2

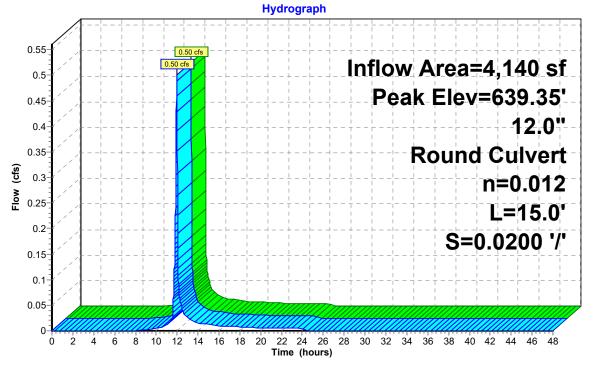
Inflow Area = 4,140 sf, 22.46% Impervious, Inflow Depth = 2.87" for 10-yr event

Inflow = 0.50 cfs @ 11.96 hrs, Volume= 990 cf

Outflow = 0.50 cfs @ 11.96 hrs, Volume= 990 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.50 cfs @ 11.96 hrs, Volume= 990 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 639.35' @ 11.96 hrs

Flood Elev= 642.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	639.00'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 639.00' / 638.70' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Flow Δrea= 0.79 sf

Primary OutFlow Max=0.50 cfs @ 11.96 hrs HW=639.35' (Free Discharge) 1=Culvert (Inlet Controls 0.50 cfs @ 2.02 fps)

Pond 12P: CB 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 13P: CB 3

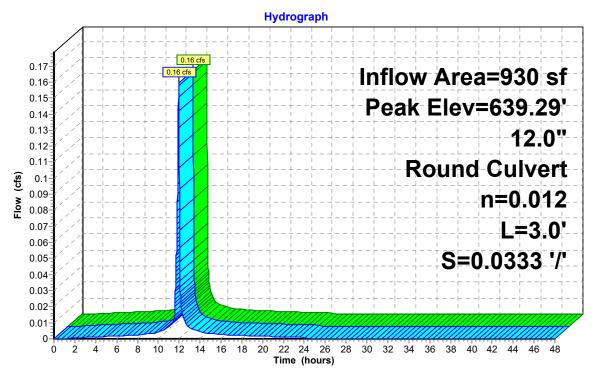
Inflow Area = 930 sf,100.00% Impervious, Inflow Depth = 4.84" for 10-yr event

Inflow = 0.16 cfs @ 11.96 hrs, Volume= 375 cf

Outflow = 0.16 cfs @ 11.96 hrs, Volume= 375 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.16 cfs @ 11.96 hrs, Volume= 375 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 639.29' @ 11.96 hrs

Flood Elev= 642.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	639.10'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 639.10' / 639.00' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.16 cfs @ 11.96 hrs HW=639.29' (Free Discharge) 1=Culvert (Inlet Controls 0.16 cfs @ 1.49 fps)

Pond 13P: CB 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

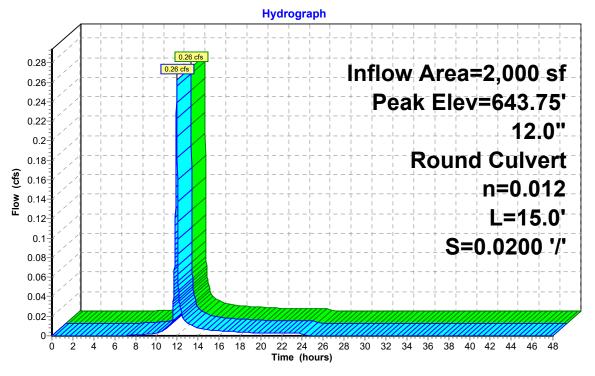
Summary for Pond 14P: CB 4

Inflow Area = 2,000 sf, 34.50% Impervious, Inflow Depth = 3.15" for 10-yr event

Inflow = 0.26 cfs @ 11.96 hrs, Volume= 525 cf

Outflow = 0.26 cfs @ 11.96 hrs, Volume= 525 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.26 cfs @ 11.96 hrs, Volume= 525 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 643.75' @ 11.96 hrs

Flood Elev= 647.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	643.50'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 643.50' / 643.20' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.26 cfs @ 11.96 hrs HW=643.75' (Free Discharge) 1=Culvert (Inlet Controls 0.26 cfs @ 1.70 fps)

Pond 14P: CB 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 15P: CB 5

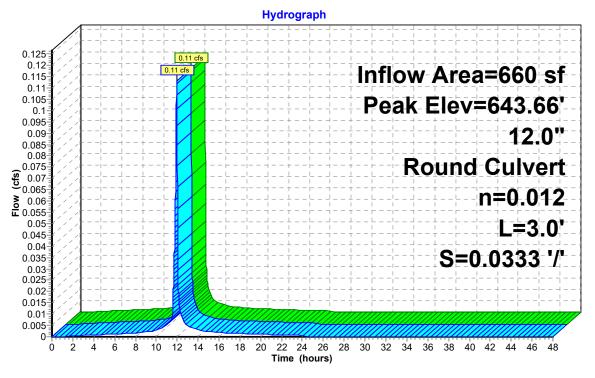
Inflow Area = 660 sf,100.00% Impervious, Inflow Depth = 4.84" for 10-yr event

Inflow = 0.11 cfs @ 11.96 hrs, Volume= 266 cf

Outflow = 0.11 cfs @ 11.96 hrs, Volume= 266 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.11 cfs @ 11.96 hrs, Volume= 266 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.66' @ 11.96 hrs

Flood Elev= 647.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	643.50'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 643.50' / 643.40' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.11 cfs @ 11.96 hrs HW=643.66' (Free Discharge) 1=Culvert (Inlet Controls 0.11 cfs @ 1.37 fps)

Pond 15P: CB 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 16P: CB 6

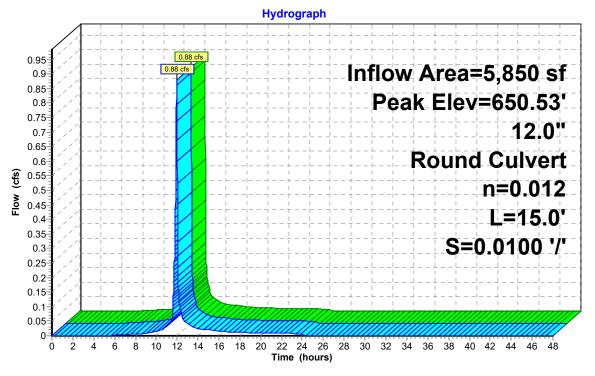
Inflow Area = 5,850 sf, 56.41% Impervious, Inflow Depth = 3.74" for 10-yr event

Inflow = 0.88 cfs @ 11.96 hrs, Volume= 1,826 cf

Outflow = 0.88 cfs @ 11.96 hrs, Volume= 1,826 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.88 cfs @ 11.96 hrs, Volume= 1,826 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.53' @ 11.96 hrs

Flood Elev= 651.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.00'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 650.00' / 649.85' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.88 cfs @ 11.96 hrs HW=650.53' (Free Discharge) 1=Culvert (Barrel Controls 0.88 cfs @ 3.02 fps)

Pond 16P: CB 6

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 17P: CB 7

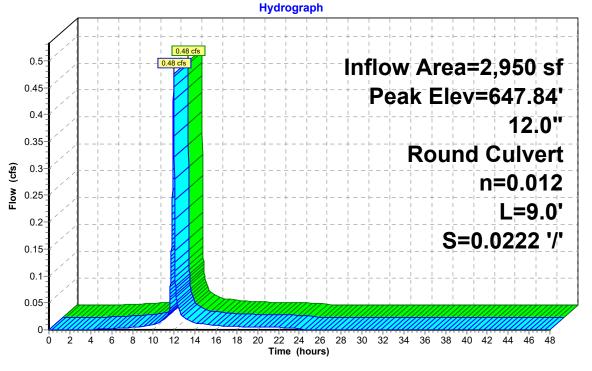
Inflow Area = 2,950 sf, 74.92% Impervious, Inflow Depth = 4.17" for 10-yr event

Inflow = 0.48 cfs @ 11.96 hrs, Volume= 1,024 cf

Outflow = 0.48 cfs @ 11.96 hrs, Volume= 1,024 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.48 cfs @ 11.96 hrs, Volume= 1,024 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 647.84' @ 11.96 hrs

Flood Elev= 651.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	647.50'	12.0" Round Culvert L= 9.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 647.50' / 647.30' S= 0.0222 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.47 cfs @ 11.96 hrs HW=647.84' (Free Discharge) 1=Culvert (Inlet Controls 0.47 cfs @ 1.99 fps)

Pond 17P: CB 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 18P: CB 8

[58] Hint: Peaked 0.37' above defined flood level

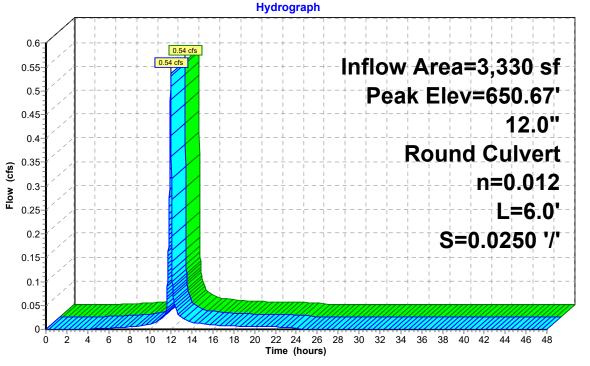
Inflow Area = 3,330 sf, 75.98% Impervious, Inflow Depth = 4.17" for 10-yr event

Inflow = 0.54 cfs @ 11.96 hrs, Volume= 1,156 cf

Outflow = 0.54 cfs @ 11.96 hrs, Volume= 1,156 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.54 cfs @ 11.96 hrs, Volume= 1,156 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.67' @ 11.96 hrs

Flood Elev= 650.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.30'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.30' / 650.15' S= 0.0250 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.54 cfs @ 11.96 hrs HW=650.67' (Free Discharge)
1=Culvert (Barrel Controls 0.54 cfs @ 2.96 fps)

Pond 18P: CB 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 19P: CB 9

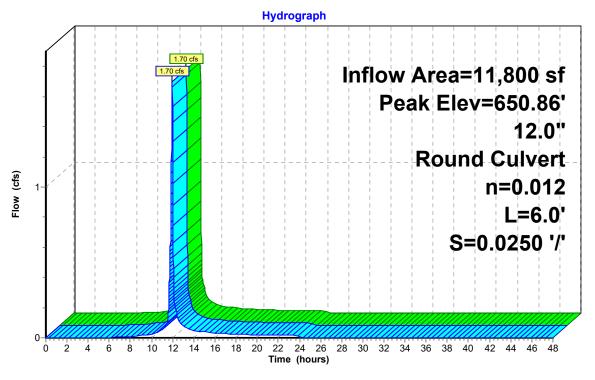
Inflow Area = 11,800 sf, 50.17% Impervious, Inflow Depth = 3.54" for 10-yr event

Inflow = 1.70 cfs @ 11.96 hrs, Volume= 3,483 cf

Outflow = 1.70 cfs @ 11.96 hrs, Volume= 3,483 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.70 cfs @ 11.96 hrs, Volume= 3,483 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.86' @ 11.96 hrs

Flood Elev= 653.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.10'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.10' / 649.95' S= 0.0250 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.70 cfs @ 11.96 hrs HW=650.86' (Free Discharge) 1=Culvert (Barrel Controls 1.70 cfs @ 3.65 fps)

Pond 19P: CB 9

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 40P: HDS Unit

[79] Warning: Submerged Pond 69P Primary device # 1 INLET by 1.22'

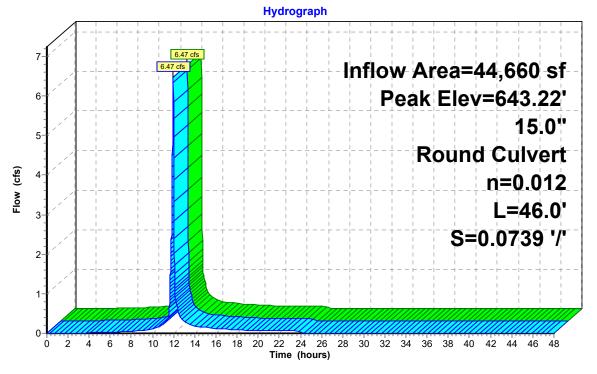
Inflow Area = 44,660 sf, 54.46% Impervious, Inflow Depth = 3.69" for 10-yr event

Inflow = 6.47 cfs @ 11.96 hrs, Volume= 13,740 cf

Outflow = 6.47 cfs @ 11.96 hrs, Volume= 13,740 cf, Atten= 0%, Lag= 0.0 min

Primary = 6.47 cfs @ 11.96 hrs, Volume= 13,740 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.22' @ 11.96 hrs

Flood Elev= 653.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	641.40'	15.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 641.40' / 638.00' S= 0.0739 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=6.46 cfs @ 11.96 hrs HW=643.22' (Free Discharge) 1=Culvert (Inlet Controls 6.46 cfs @ 5.26 fps)

Pond 40P: HDS Unit

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 80

Summary for Pond 50P: WQB

[79] Warning: Submerged Pond 40P Primary device # 1 OUTLET by 2.31'

Inflow Area = 79,190 sf, 30.71% Impervious, Inflow Depth = 3.14" for 10-yr event

Inflow = 10.04 cfs @ 11.96 hrs, Volume= 20,728 cf

0.45 cfs @ 13.17 hrs, Volume= 0.45 cfs @ 13.17 hrs, Volume= Outflow = 16,342 cf, Atten= 96%, Lag= 72.9 min

Primary 16.342 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 640.31' @ 13.17 hrs Surf.Area= 7,355 sf Storage= 12,412 cf

Flood Elev= 644.00' Surf.Area= 14,157 sf Storage= 51,826 cf

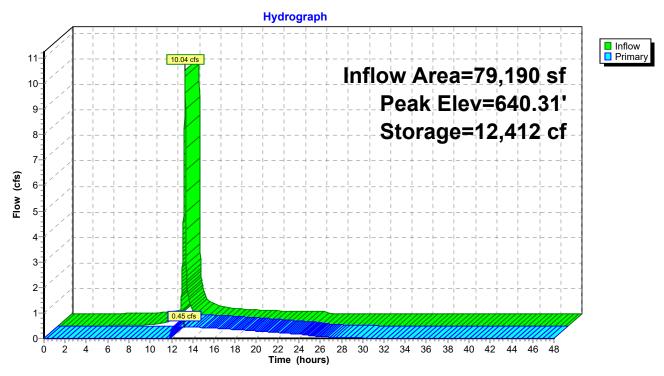
Plug-Flow detention time= 373.8 min calculated for 16,338 cf (79% of inflow)

Center-of-Mass det. time= 288.0 min (1,089.2 - 801.2)

Volume	Inve	ert Avai	l.Storage	Storage Descriptio	n		
#1	638.0	00'	51,826 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
638.0	00	3,553	532.6	0	0	3,553	
640.0	00	6,861	570.3	10,234	10,234	7,041	
642.0	00	10,396	608.0	17,135	27,369	10,767	
644.0	00	14,157	645.7	24,456	51,826	14,732	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	638	.00' 12.0	" Round Culvert			
#2	Device 1	Inle n=		0.0' CPP, square 6 / Outlet Invert= 638 .012, Flow Area= 0 Vert. Orifice/Grate	.00' / 637.10' S= 0 .79 sf	= 0.500 0.0100 '/' Cc= 0.900	
#3	Device 1	642	Hea	long x 0.5' breadtl d (feet) 0.20 0.40 f. (English) 2.80 2.	0.60 0.80 1.00	_	

Primary OutFlow Max=0.45 cfs @ 13.17 hrs HW=640.31' (Free Discharge)

-1=Culvert (Passes 0.45 cfs of 4.74 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.45 cfs @ 5.14 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

076491 Nichols Townhouses

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Pond 50P: WQB

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 61P: DMH 1

[79] Warning: Submerged Pond 62P Primary device # 1 OUTLET by 0.80'

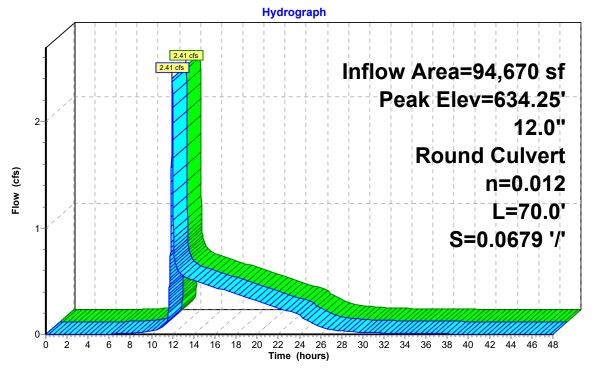
Inflow Area = 94,670 sf, 32.50% Impervious, Inflow Depth > 2.62" for 10-yr event

Inflow = 2.41 cfs @ 11.96 hrs, Volume= 20,658 cf

Outflow = 2.41 cfs @ 11.96 hrs, Volume= 20,658 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.41 cfs @ 11.96 hrs, Volume= 20,658 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 634.25' @ 11.96 hrs

Flood Elev= 639.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	633.35'	12.0" Round Culvert L= 70.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 633.35' / 628.60' S= 0.0679 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=2.40 cfs @ 11.96 hrs HW=634.25' (Free Discharge) 1=Culvert (Inlet Controls 2.40 cfs @ 3.23 fps)

Pond 61P: DMH 1

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 62P: DMH 2

[79] Warning: Submerged Pond 63P Primary device # 1 OUTLET by 0.80'

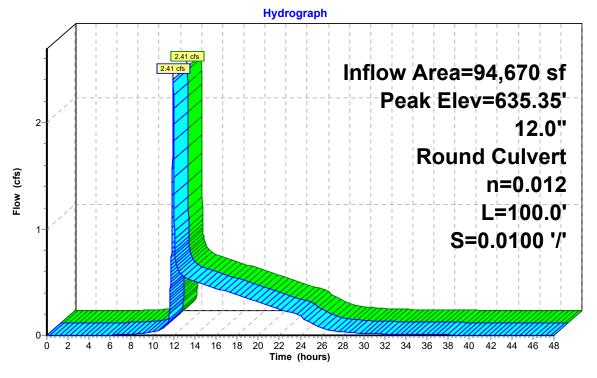
Inflow Area = 94,670 sf, 32.50% Impervious, Inflow Depth > 2.62" for 10-yr event

Inflow = 2.41 cfs @ 11.96 hrs, Volume= 20,658 cf

Outflow = 2.41 cfs @ 11.96 hrs, Volume= 20,658 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.41 cfs @ 11.96 hrs, Volume= 20,658 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 635.35' @ 11.96 hrs

Flood Elev= 640.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	634.45'	12.0" Round Culvert
			L= 100.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 634.45' / 633.45' S= 0.0100 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=2.40 cfs @ 11.96 hrs HW=635.35' (Free Discharge) 1=Culvert (Inlet Controls 2.40 cfs @ 3.23 fps)

Pond 62P: DMH 2

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 63P: DMH 3

[79] Warning: Submerged Pond 64P Primary device # 1 OUTLET by 0.51'

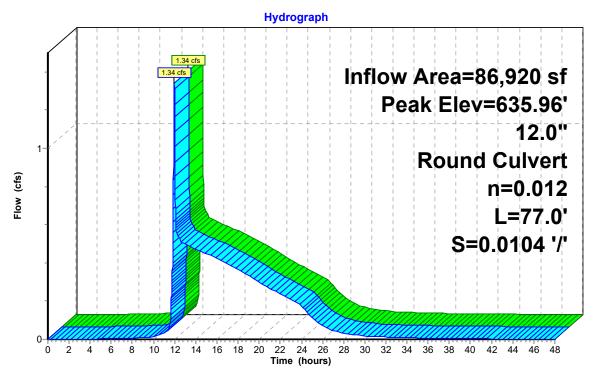
Inflow Area = 86,920 sf, 31.67% Impervious, Inflow Depth > 2.55" for 10-yr event

Inflow = 1.34 cfs @ 11.97 hrs, Volume= 18,499 cf

Outflow = 1.34 cfs @ 11.97 hrs, Volume= 18,499 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.34 cfs @ 11.97 hrs, Volume= 18,499 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 635.96' @ 11.97 hrs

Flood Elev= 642.70'

Device	Routing	Invert	Outlet Devices
#1	Primary	635.35'	12.0" Round Culvert L= 77.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 635.35' / 634.55' S= 0.0104 '/' Cc= 0.900 n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=1.34 cfs @ 11.97 hrs HW=635.96' (Free Discharge) 1=Culvert (Inlet Controls 1.34 cfs @ 2.66 fps)

Pond 63P: DMH 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 64P: DMH 4

[79] Warning: Submerged Pond 65P Primary device # 1 OUTLET by 0.32'

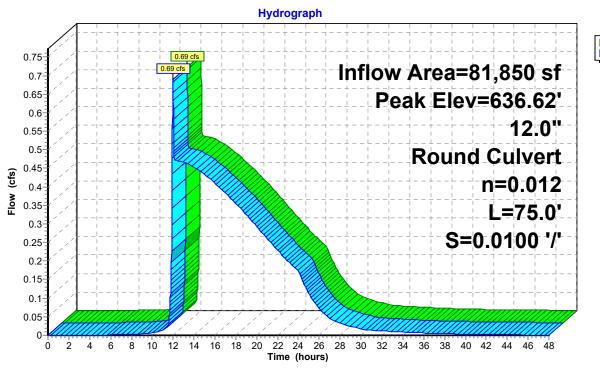
Inflow Area = 81,850 sf, 31.36% Impervious, Inflow Depth > 2.51" for 10-yr event

Inflow = 0.69 cfs @ 11.98 hrs, Volume= 17,133 cf

Outflow = 0.69 cfs @ 11.98 hrs, Volume= 17,133 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.69 cfs @ 11.98 hrs, Volume= 17,133 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 636.62' @ 11.98 hrs

Flood Elev= 647.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	636.20'	12.0" Round Culvert L= 75.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 636.20' / 635.45' S= 0.0100 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.68 cfs @ 11.98 hrs HW=636.62' (Free Discharge) 1=Culvert (Inlet Controls 0.68 cfs @ 2.20 fps)

Pond 64P: DMH 4

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 65P: DMH 5

[79] Warning: Submerged Pond 50P Primary device # 1 OUTLET by 0.23'

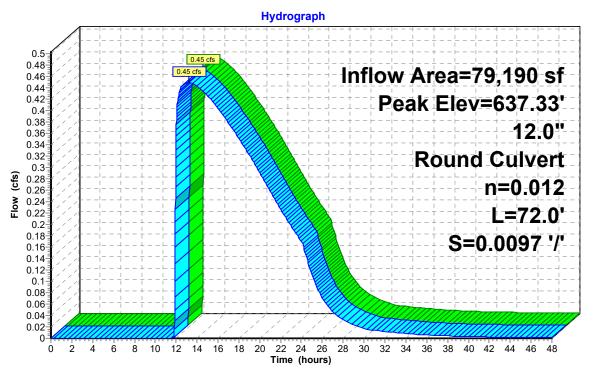
Inflow Area = 79,190 sf, 30.71% Impervious, Inflow Depth > 2.48" for 10-yr event

Inflow = 0.45 cfs @ 13.17 hrs, Volume= 16,342 cf

Outflow = 0.45 cfs @ 13.17 hrs, Volume= 16,342 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.45 cfs @ 13.17 hrs, Volume= 16,342 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 637.33' @ 13.17 hrs

Flood Elev= 651.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	637.00'	12.0" Round Culvert
			L= 72.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 637.00' / 636.30' S= 0.0097 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.44 cfs @ 13.17 hrs HW=637.33' (Free Discharge)
1=Culvert (Inlet Controls 0.44 cfs @ 1.95 fps)

Pond 65P: DMH 5

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 66P: DMH 6

[79] Warning: Submerged Pond 17P Primary device # 1 INLET by 0.26'

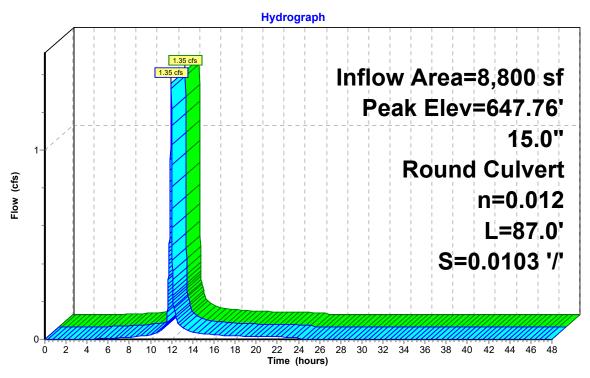
Inflow Area = 8,800 sf, 62.61% Impervious, Inflow Depth = 3.89" for 10-yr event

Inflow = 1.35 cfs @ 11.96 hrs, Volume= 2,850 cf

Outflow = 1.35 cfs @ 11.96 hrs, Volume= 2,850 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.35 cfs @ 11.96 hrs, Volume= 2,850 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 647.76' @ 11.96 hrs

Flood Elev= 651.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	647.20'	15.0" Round Culvert L= 87.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 647.20' / 646.30' S= 0.0103 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=1.35 cfs @ 11.96 hrs HW=647.76' (Free Discharge) 1=Culvert (Inlet Controls 1.35 cfs @ 2.54 fps)

Pond 66P: DMH 6

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 67P: DMH 7

[79] Warning: Submerged Pond 66P Primary device # 1 OUTLET by 0.57'

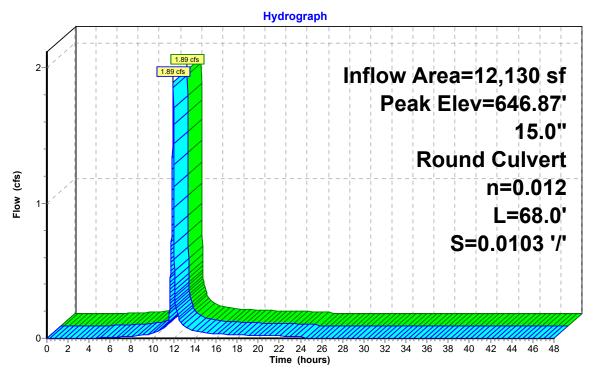
Inflow Area = 12,130 sf, 66.28% Impervious, Inflow Depth = 3.96" for 10-yr event

Inflow = 1.89 cfs @ 11.96 hrs, Volume= 4,007 cf

Outflow = 1.89 cfs @ 11.96 hrs, Volume= 4,007 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.89 cfs @ 11.96 hrs, Volume= 4,007 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 646.87' @ 11.96 hrs

Flood Elev= 654.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	646.20'	15.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 646.20' / 645.50' S= 0.0103 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=1.88 cfs @ 11.96 hrs HW=646.87' (Free Discharge)
1=Culvert (Inlet Controls 1.88 cfs @ 2.79 fps)

Pond 67P: DMH 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 68P: DMH 8

[79] Warning: Submerged Pond 67P Primary device # 1 INLET by 0.25'

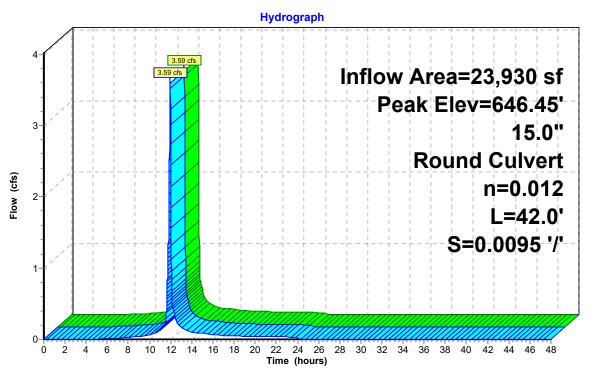
Inflow Area = 23,930 sf, 58.34% Impervious, Inflow Depth = 3.76" for 10-yr event

Inflow = 3.59 cfs @ 11.96 hrs, Volume= 7,489 cf

Outflow = 3.59 cfs @ 11.96 hrs, Volume= 7,489 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.59 cfs @ 11.96 hrs, Volume= 7,489 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 646.45' @ 11.96 hrs

Flood Elev= 654.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	645.40'	15.0" Round Culvert
			L= 42.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 645.40' / 645.00' S= 0.0095 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=3.59 cfs @ 11.96 hrs HW=646.45' (Free Discharge) 1=Culvert (Barrel Controls 3.59 cfs @ 4.40 fps)

Pond 68P: DMH 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 69P: DMH 9

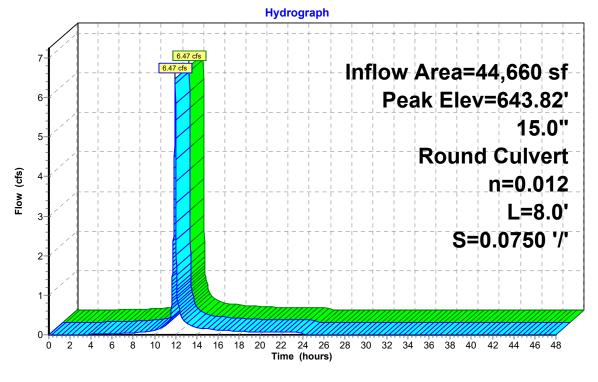
Inflow Area = 44,660 sf, 54.46% Impervious, Inflow Depth = 3.69" for 10-yr event

Inflow = 6.47 cfs @ 11.96 hrs, Volume= 13,740 cf

Outflow = 6.47 cfs @ 11.96 hrs, Volume= 13,740 cf, Atten= 0%, Lag= 0.0 min

Primary = 6.47 cfs @ 11.96 hrs, Volume= 13,740 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.82' @ 11.96 hrs

Flood Elev= 654.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	642.00'	15.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 642.00' / 641.40' S= 0.0750 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=6.46 cfs @ 11.96 hrs HW=643.82' (Free Discharge) 1=Culvert (Inlet Controls 6.46 cfs @ 5.26 fps)

Pond 69P: DMH 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 70P: DMH 10

[79] Warning: Submerged Pond 71P Primary device # 1 OUTLET by 0.98'

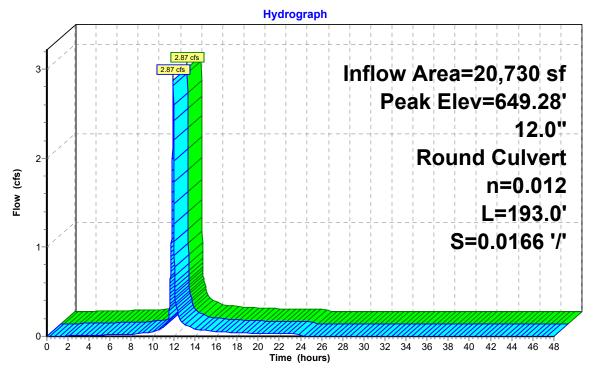
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 3.62" for 10-yr event

Inflow = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf

Outflow = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 649.28' @ 11.96 hrs

Flood Elev= 655.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	648.20'	12.0" Round Culvert
			L= 193.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 648.20' / 645.00' S= 0.0166 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=2.87 cfs @ 11.96 hrs HW=649.28' (Free Discharge) 1=Culvert (Inlet Controls 2.87 cfs @ 3.66 fps)

Pond 70P: DMH 10

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 71P: DMH 11

[79] Warning: Submerged Pond 83P Primary device # 1 OUTLET by 0.98'

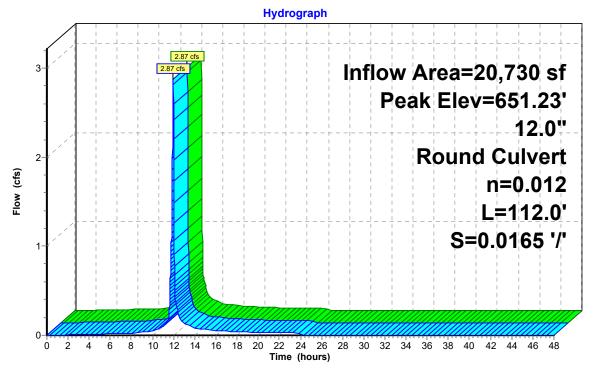
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 3.62" for 10-yr event

Inflow = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf

Outflow = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 651.23' @ 11.96 hrs

Flood Elev= 655.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.15'	12.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 650.15' / 648.30' S= 0.0165 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=2.87 cfs @ 11.96 hrs HW=651.23' (Free Discharge) 1=Culvert (Inlet Controls 2.87 cfs @ 3.66 fps)

Pond 71P: DMH 11

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

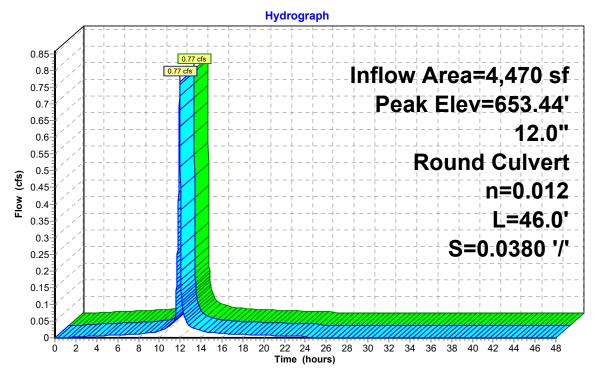
Summary for Pond 81P: YD 1

Inflow Area = 4,470 sf,100.00% Impervious, Inflow Depth = 4.84" for 10-yr event

Inflow = 0.77 cfs @ 11.96 hrs, Volume= 1,804 cf

Outflow = 0.77 cfs @ 11.96 hrs, Volume= 1,804 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.77 cfs @ 11.96 hrs, Volume= 1,804 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 653.44' @ 11.96 hrs

Flood Elev= 656.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	653.00'	12.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 653.00' / 651.25' S= 0.0380 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.76 cfs @ 11.96 hrs HW=653.44' (Free Discharge) 1=Culvert (Inlet Controls 0.76 cfs @ 2.27 fps)

Pond 81P: YD 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 82P: YD 2

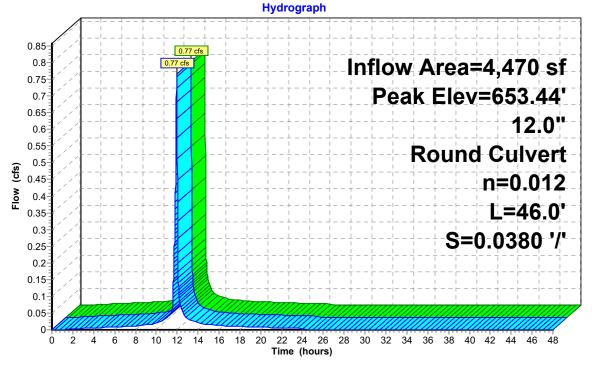
Inflow Area = 4,470 sf,100.00% Impervious, Inflow Depth = 4.84" for 10-yr event

Inflow = 0.77 cfs @ 11.96 hrs, Volume= 1,804 cf

Outflow = 0.77 cfs @ 11.96 hrs, Volume= 1,804 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.77 cfs @ 11.96 hrs, Volume= 1,804 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 653.44' @ 11.96 hrs

Flood Elev= 656.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	653.00'	12.0" Round Culvert
			L= 46.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 653.00' / 651.25' S= 0.0380 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.76 cfs @ 11.96 hrs HW=653.44' (Free Discharge) 1=Culvert (Inlet Controls 0.76 cfs @ 2.27 fps)

Pond 82P: YD 2

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 83P: YD 3

[79] Warning: Submerged Pond 81P Primary device # 1 OUTLET by 1.08' [79] Warning: Submerged Pond 82P Primary device # 1 OUTLET by 1.08'

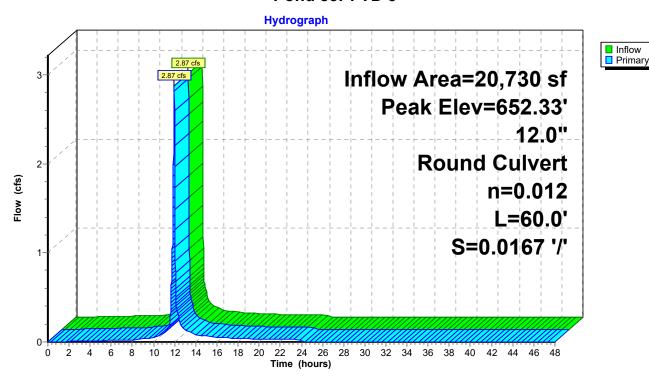
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 3.62" for 10-yr event

Inflow = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf

Outflow = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.87 cfs @ 11.96 hrs, Volume= 6,251 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 652.33' @ 11.96 hrs

Flood Elev= 654.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	651.25'	12.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 651.25' / 650.25' S= 0.0167 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=2.87 cfs @ 11.96 hrs HW=652.33' (Free Discharge) 1=Culvert (Inlet Controls 2.87 cfs @ 3.66 fps)

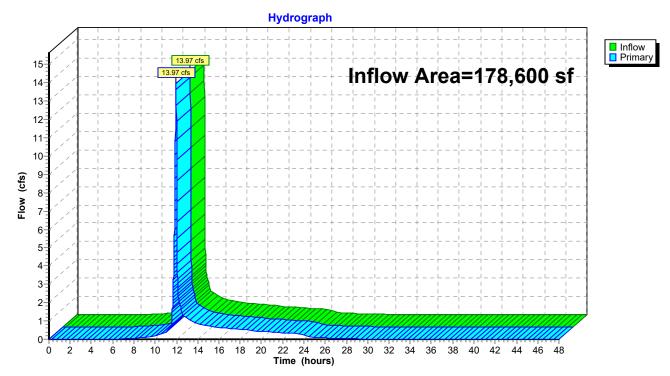
Pond 83P: YD 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Link 10L: Center Road


Inflow Area = 178,600 sf, 37.73% Impervious, Inflow Depth = 2.96" for 10-yr event

Inflow = 13.97 cfs @ 11.96 hrs, Volume= 44,045 cf

Primary = 13.97 cfs @ 11.96 hrs, Volume= 44,045 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Link 10L: Center Road

Proposed Conditions Type II 24-hr 25-yr Rainfall=6.20" Printed 5/23/2022 Page 97

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: Proposed to Center	Runoff Area=83,930 sf 43.63% Impervious Runoff Depth=4.38" Tc=5.0 min CN=84 Runoff=14.93 cfs 30,663 cf
Subcatchment11S: Proposed to CB 1	Runoff Area=7,750 sf 41.81% Impervious Runoff Depth=4.38" Tc=5.0 min CN=84 Runoff=1.38 cfs 2,831 cf
Subcatchment12S: Proposed to CB 2	Runoff Area=4,140 sf 22.46% Impervious Runoff Depth=3.86" Tc=5.0 min CN=79 Runoff=0.66 cfs 1,331 cf
Subcatchment13S: Proposed to CB 3	Runoff Area=930 sf 100.00% Impervious Runoff Depth=5.96" Tc=5.0 min CN=98 Runoff=0.19 cfs 462 cf
Subcatchment14S: Proposed to CB 4	Runoff Area=2,000 sf 34.50% Impervious Runoff Depth=4.17" Tc=5.0 min CN=82 Runoff=0.34 cfs 695 cf
Subcatchment15S: Proposed to CB 5	Runoff Area=660 sf 100.00% Impervious Runoff Depth=5.96" Tc=5.0 min CN=98 Runoff=0.14 cfs 328 cf
Subcatchment16S: Proposed to CB 6	Runoff Area=5,850 sf 56.41% Impervious Runoff Depth=4.82" Tc=5.0 min CN=88 Runoff=1.11 cfs 2,349 cf
Subcatchment17S: Proposed to CB 7	Runoff Area=2,950 sf 74.92% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=0.59 cfs 1,295 cf
Subcatchment18S: Proposed to CB 8	Runoff Area=3,330 sf 75.98% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=0.67 cfs 1,461 cf
Subcatchment19S: Proposed to CB 9	Runoff Area=11,800 sf 50.17% Impervious Runoff Depth=4.60" Tc=5.0 min CN=86 Runoff=2.17 cfs 4,523 cf
Subcatchment20S: Proposed to Northern	Runoff Area=56,570 sf 79.49% Impervious Runoff Depth=5.38" Tc=5.0 min CN=93 Runoff=11.45 cfs 25,363 cf
Subcatchment30S: Proposed to West Flow	Runoff Area=230,400 sf 0.36% Impervious Runoff Depth=3.06" w Length=530' Tc=20.1 min CN=71 Runoff=17.94 cfs 58,766 cf
Subcatchment40S: Proposed to South	Runoff Area=19,030 sf 0.00% Impervious Runoff Depth=3.16" Flow Length=255' Tc=16.0 min CN=72 Runoff=1.73 cfs 5,007 cf
Subcatchment50S: Proposed to WQB	Runoff Area=34,530 sf 0.00% Impervious Runoff Depth=3.35" Tc=5.0 min CN=74 Runoff=4.90 cfs 9,651 cf
Subcatchment81S: Proposed to YD 1	Runoff Area=4,470 sf 100.00% Impervious Runoff Depth=5.96" Tc=5.0 min CN=98 Runoff=0.94 cfs 2,221 cf
Subcatchment82S: Proposed to YD 2	Runoff Area=4,470 sf 100.00% Impervious Runoff Depth=5.96" Tc=5.0 min CN=98 Runoff=0.94 cfs 2,221 cf

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Subcatchment83S: Propos	Runoff Area=11,790 sf 12.04% Impervious Runoff Depth=3.65" Tc=5.0 min CN=77 Runoff=1.81 cfs 3,590 cf
Pond 11P: CB 1	Peak Elev=637.09' Inflow=1.38 cfs 2,831 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=1.38 cfs 2,831 cf
Pond 12P: CB 2	Peak Elev=639.41' Inflow=0.66 cfs 1,331 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.66 cfs 1,331 cf
Pond 13P: CB 3	Peak Elev=639.32' Inflow=0.19 cfs 462 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.19 cfs 462 cf
Pond 14P: CB 4	Peak Elev=643.79' Inflow=0.34 cfs 695 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.34 cfs 695 cf
Pond 15P: CB 5	Peak Elev=643.68' Inflow=0.14 cfs 328 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.14 cfs 328 cf
Pond 16P: CB 6	Peak Elev=650.61' Inflow=1.11 cfs 2,349 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0100 '/' Outflow=1.11 cfs 2,349 cf
Pond 17P: CB 7	Peak Elev=647.89' Inflow=0.59 cfs 1,295 cf 12.0" Round Culvert n=0.012 L=9.0' S=0.0222'/' Outflow=0.59 cfs 1,295 cf
Pond 18P: CB 8	Peak Elev=650.73' Inflow=0.67 cfs 1,461 cf 12.0" Round Culvert n=0.012 L=6.0' S=0.0250 '/' Outflow=0.67 cfs 1,461 cf
Pond 19P: CB 9	Peak Elev=651.00' Inflow=2.17 cfs 4,523 cf 12.0" Round Culvert n=0.012 L=6.0' S=0.0250 '/' Outflow=2.17 cfs 4,523 cf
Pond 40P: HDS Unit	Peak Elev=643.96' Inflow=8.22 cfs 17,660 cf 15.0" Round Culvert n=0.012 L=46.0' S=0.0739 '/' Outflow=8.22 cfs 17,660 cf
Pond 50P: WQB	Peak Elev=640.86' Storage=16,741 cf Inflow=13.12 cfs 27,310 cf Outflow=0.55 cfs 22,917 cf
Pond 61P: DMH 1	Peak Elev=634.53' Inflow=3.13 cfs 28,565 cf 12.0" Round Culvert n=0.012 L=70.0' S=0.0679'/ Outflow=3.13 cfs 28,565 cf
Pond 62P: DMH 2	Peak Elev=635.63' Inflow=3.13 cfs 28,565 cf 12.0" Round Culvert n=0.012 L=100.0' S=0.0100 '/' Outflow=3.13 cfs 28,565 cf
Pond 63P: DMH 3	Peak Elev=636.07' Inflow=1.75 cfs 25,733 cf 12.0" Round Culvert n=0.012 L=77.0' S=0.0104 '/' Outflow=1.75 cfs 25,733 cf
Pond 64P: DMH 4	Peak Elev=636.68' Inflow=0.90 cfs 23,940 cf 12.0" Round Culvert n=0.012 L=75.0' S=0.0100 '/' Outflow=0.90 cfs 23,940 cf
Pond 65P: DMH 5	Peak Elev=637.36' Inflow=0.55 cfs 22,917 cf 12.0" Round Culvert n=0.012 L=72.0' S=0.0097 '/' Outflow=0.55 cfs 22,917 cf

Proposed Conditions
Type II 24-hr 25-yr Rainfall=6.20"
Printed 5/23/2022

Page 99

Prepared by CHA Companies, Inc.

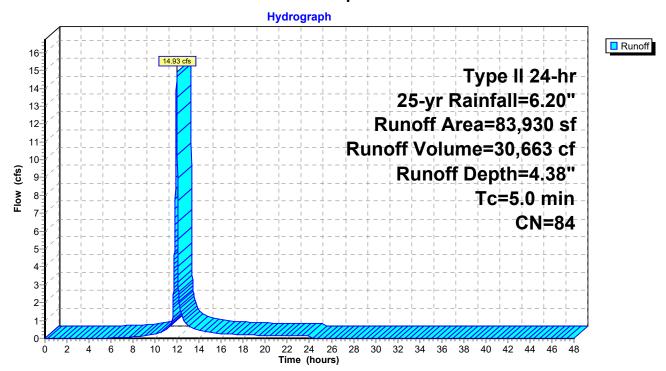
HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Pond 66P: DMH 6	Peak Elev=647.84' Inflow=1.70 cfs 3,644 cf 15.0" Round Culvert n=0.012 L=87.0' S=0.0103 '/' Outflow=1.70 cfs 3,644 cf
Pond 67P: DMH 7	Peak Elev=646.97' Inflow=2.37 cfs 5,105 cf 15.0" Round Culvert n=0.012 L=68.0' S=0.0103 '/' Outflow=2.37 cfs 5,105 cf
Pond 68P: DMH 8	Peak Elev=646.65' Inflow=4.54 cfs 9,628 cf 15.0" Round Culvert n=0.012 L=42.0' S=0.0095 '/' Outflow=4.54 cfs 9,628 cf
Pond 69P: DMH 9	Peak Elev=644.56' Inflow=8.22 cfs 17,660 cf 15.0" Round Culvert n=0.012 L=8.0' S=0.0750 '/' Outflow=8.22 cfs 17,660 cf
Pond 70P: DMH 10	Peak Elev=649.65' Inflow=3.68 cfs 8,032 cf 12.0" Round Culvert n=0.012 L=193.0' S=0.0166 '/' Outflow=3.68 cfs 8,032 cf
Pond 71P: DMH 11	Peak Elev=651.60' Inflow=3.68 cfs 8,032 cf 12.0" Round Culvert n=0.012 L=112.0' S=0.0165 '/' Outflow=3.68 cfs 8,032 cf
Pond 81P: YD 1	Peak Elev=653.50' Inflow=0.94 cfs 2,221 cf 12.0" Round Culvert n=0.012 L=46.0' S=0.0380 '/' Outflow=0.94 cfs 2,221 cf
Pond 82P: YD 2	Peak Elev=653.50' Inflow=0.94 cfs 2,221 cf 12.0" Round Culvert n=0.012 L=46.0' S=0.0380 '/' Outflow=0.94 cfs 2,221 cf
Pond 83P: YD 3	Peak Elev=652.70' Inflow=3.68 cfs 8,032 cf 12.0" Round Culvert n=0.012 L=60.0' S=0.0167 '/' Outflow=3.68 cfs 8,032 cf
Link 10L: Center Road	Inflow=18.06 cfs 59,227 cf Primary=18.06 cfs 59,227 cf

Total Runoff Area = 484,600 sf Runoff Volume = 152,757 cf Average Runoff Depth = 3.78" 76.64% Pervious = 371,420 sf 23.36% Impervious = 113,180 sf

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 10S: Proposed to Center Road

Runoff = 14.93 cfs @ 11.96 hrs, Volume= 30,663 cf, Depth= 4.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

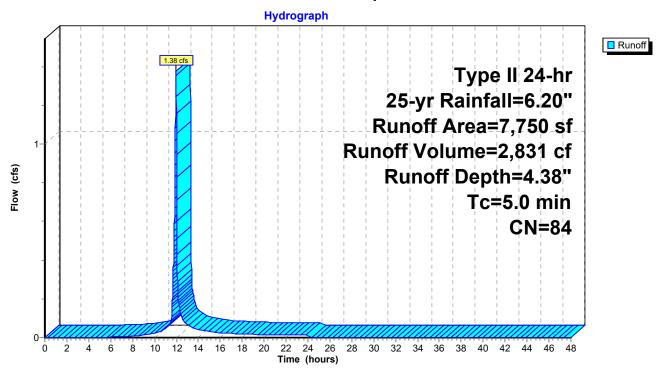
	Area (sf)	CN	Description					
*	36,620	98	Paved					
	38,010	74	>75% Gras	s cover, Go	Good, HSG C			
	9,300	70	Woods, Go	od, HSG C				
	83,930	84	Weighted A	Weighted Average				
	47,310		56.37% Pervious Area					
	36,620		43.63% Impervious Area					
	-	01						
	Tc Length	Slop						
(r	min) (feet)	(ft/1	ft) (ft/sec)	(cfs)				
	5.0				Direct Entry,			

Subcatchment 10S: Proposed to Center Road

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 11S: Proposed to CB 1

Runoff = 1.38 cfs @ 11.96 hrs, Volume= 2,831 cf, Depth= 4.38"

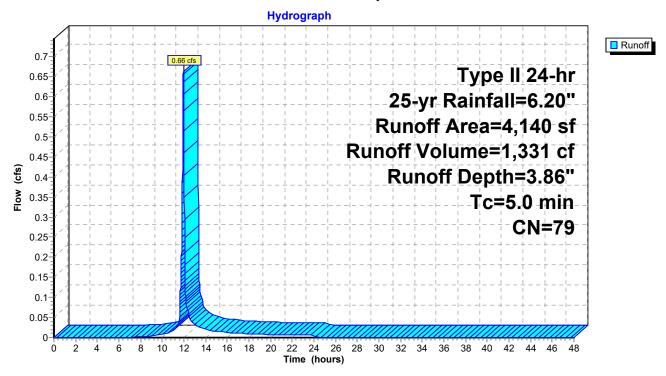
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

_	Α	rea (sf)	CN	Description							
*		3,240	98	Paved							
		4,510	74	>75% Gras	s cover, Go	Good, HSG C					
		7,750	84	Weighted A	Veighted Average						
		4,510		58.19% Pervious Area							
		3,240		41.81% Impervious Area							
	Тс	Length	Slope	e Velocity	Capacity	/ Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	5.0					Direct Entry.					

Subcatchment 11S: Proposed to CB 1

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 12S: Proposed to CB 2

Runoff = 0.66 cfs @ 11.96 hrs, Volume= 1,331 cf, Depth= 3.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

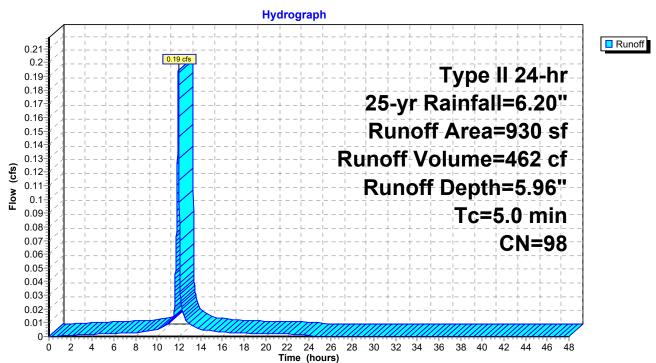
	Α	rea (sf)	CN	Description						
*		930	98	Paved						
		3,210	74	>75% Grass cover, Good, HSG C						
		4,140	79	Weighted Average						
		3,210		77.54% Pervious Area						
		930		22.46% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 12S: Proposed to CB 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 13S: Proposed to CB 3

Runoff = 0.19 cfs @ 11.96 hrs, Volume= 462 cf, Depth= 5.96"

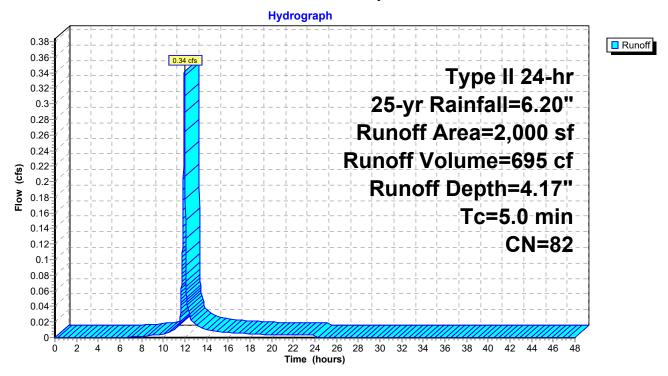
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

_	Α	rea (sf)	CN [Description						
*		930	98 F	Paved						
_		930	1	100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry,				

Subcatchment 13S: Proposed to CB 3

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 14S: Proposed to CB 4

Runoff = 0.34 cfs @ 11.96 hrs, Volume= 695 cf, Depth= 4.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

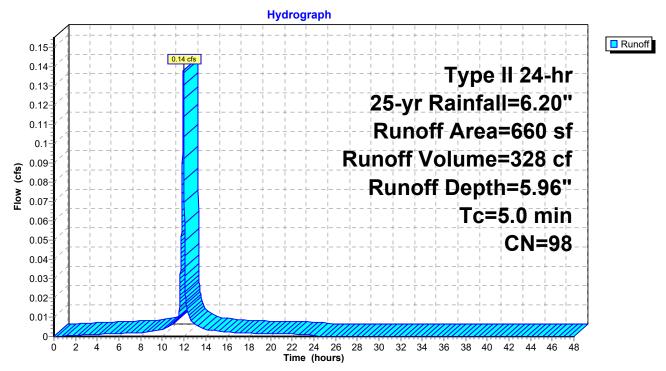
	Α	rea (sf)	CN	Description						
*		690	98	Paved						
_		1,310	74	>75% Grass cover, Good, HSG C						
		2,000	82	Weighted A	Veighted Average					
		1,310		65.50% Pervious Area						
		690		34.50% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 14S: Proposed to CB 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 15S: Proposed to CB 5

Runoff = 0.14 cfs @ 11.96 hrs, Volume= 328 cf, Depth= 5.96"

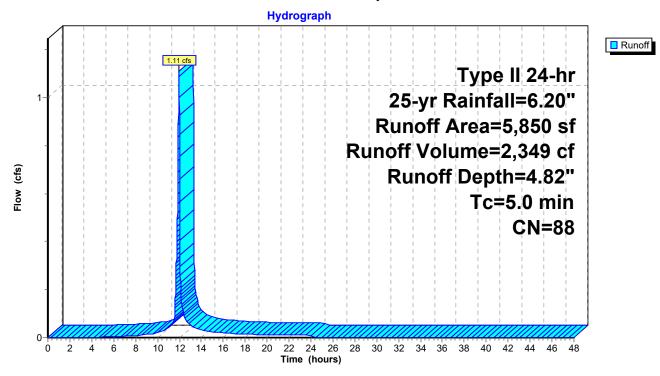
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	Α	rea (sf)	CN [Description						
*		660	98 F	Paved						
		660	1	100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry,				

Subcatchment 15S: Proposed to CB 5

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 16S: Proposed to CB 6

Runoff = 1.11 cfs @ 11.96 hrs, Volume= 2,349 cf, Depth= 4.82"

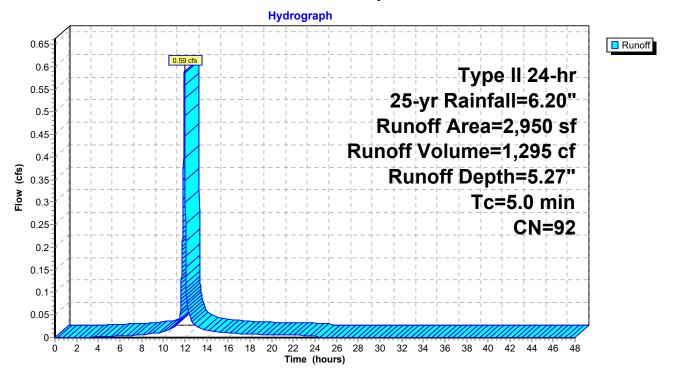
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	Α	rea (sf)	CN	Description							
*	•	3,300	98	Paved							
_		2,550	74	>75% Grass cover, Good, HSG C							
_		5,850	88	Weighted A	Veighted Average						
		2,550		43.59% Pervious Area							
		3,300		56.41% Impervious Area							
	Тс	Length	Slope	e Velocity	Capacity	/ Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	5.0					Direct Entry					

Subcatchment 16S: Proposed to CB 6

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 17S: Proposed to CB 7

Runoff = 0.59 cfs @ 11.96 hrs, Volume= 1,295 cf, Depth= 5.27"

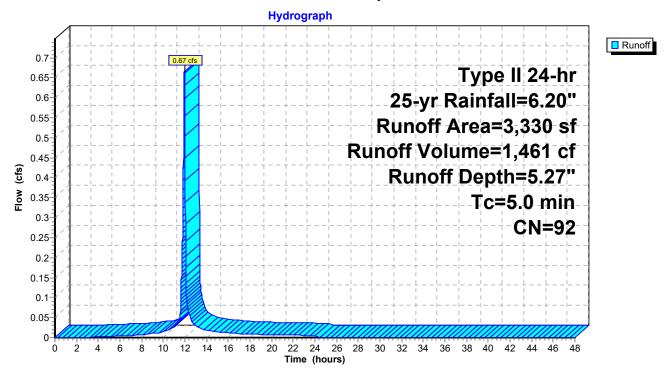
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	Α	rea (sf)	CN	Description							
*		2,210	98	Paved							
		740	74	>75% Grass cover, Good, HSG C							
		2,950	92	Weighted Average							
		740		25.08% Pervious Area							
		2,210		74.92% lm _l	pervious Ar	ea					
	Тс	Length	Slope	,	Capacity	Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	5.0					Direct Entry,					

Subcatchment 17S: Proposed to CB 7

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 18S: Proposed to CB 8

Runoff = 0.67 cfs @ 11.96 hrs, Volume= 1,461 cf, Depth= 5.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	Α	rea (sf)	CN	Description						
*		2,530	98	Paved						
		800	74	>75% Grass cover, Good, HSG C						
		3,330		Veighted Average						
		800		24.02% Pervious Area						
		2,530		75.98% lmp						
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft	,	(cfs)	Description				
_		(ieet)	וויונ) (IVSEC)	(015)					
	5.0					Direct Entry.				

Subcatchment 18S: Proposed to CB 8

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 19S: Proposed to CB 9

Runoff = 2.17 cfs @ 11.96 hrs, Volume= 4,523 cf, Depth= 4.60"

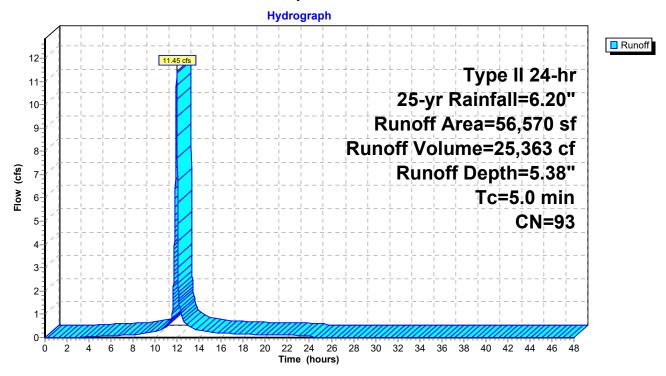
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	Ar	ea (sf)	CN	Description						
*		5,920	98	Paved						
		5,880	74	75% Grass cover, Good, HSG C						
	1	11,800	86	Veighted Average						
		5,880		49.83% Pervious Area						
		5,920		50.17% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 19S: Proposed to CB 9

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 20S: Proposed to Northern Detention Basin

Runoff = 11.45 cfs @ 11.96 hrs, Volume= 25,363 cf, Depth= 5.38"

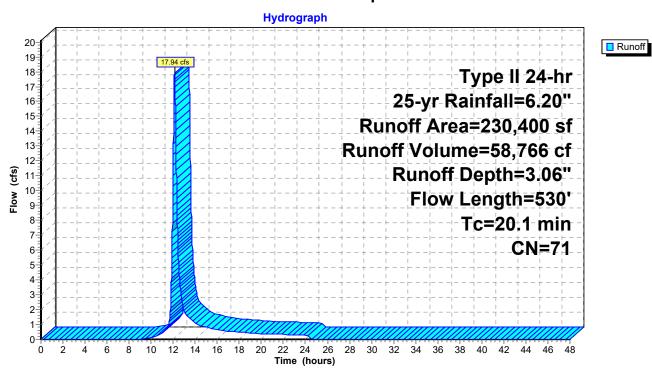
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

_	Α	rea (sf)	CN	Description						
*		44,970	98	Paved						
_		11,600	74	>75% Grass cover, Good, HSG C						
_		56,570 93 Weighted Average								
		11,600								
		44,970		79.49% lmp	pervious Ar	Area				
	Тс	Length	Slope	Velocity	Capacity	/ Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·				
	5.0					Direct Entry.				

Subcatchment 20S: Proposed to Northern Detention Basin

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 30S: Proposed to West

Runoff = 17.94 cfs @ 12.13 hrs, Volume= 58,766 cf, Depth= 3.06"

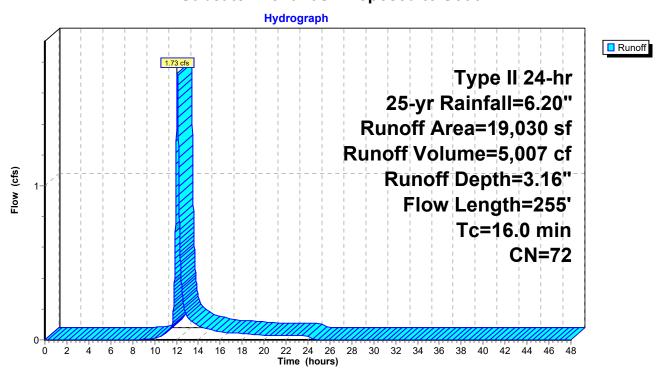
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	Aı	rea (sf)	CN E	Description							
*		820	98 F	98 Paved							
		71,890	74 >	75% Gras	s cover, Go	ood, HSG C					
	1	57,690	70 V	Voods, Go	od, HSG C						
	2	30,400	71 V	Veighted A	verage						
	229,580 99.64% Pervious Area										
820 0.36% Impervious Area						a					
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	12.4	75	0.0060	0.10		Sheet Flow,					
						Grass: Short n= 0.150 P2= 3.29"					
	5.6	165	0.0050	0.49		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	2.1	290	0.1070	2.29		Shallow Concentrated Flow,					
_						Short Grass Pasture Kv= 7.0 fps					
	20.1	530	Total								

Subcatchment 30S: Proposed to West

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 40S: Proposed to South

Runoff = 1.73 cfs @ 12.08 hrs, Volume= 5,007 cf, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

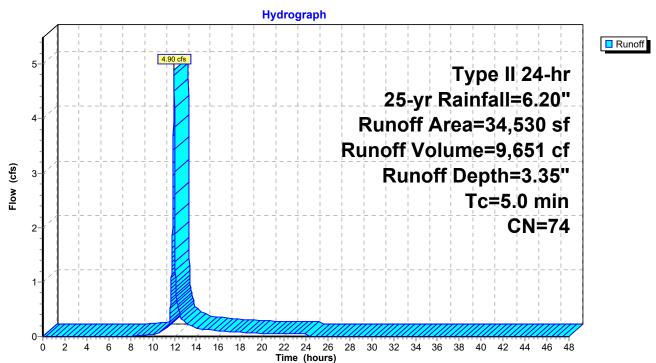
A	rea (sf)	CN [Description							
	10,460	74 >	74 >75% Grass cover, Good, HSG C							
	8,570	70 \	<u> Voods, Go</u>	<u>od, HSG C</u>						
	19,030 72 Weighted Average									
	19,030	1	100.00% Pe	ervious Are	a					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
12.4	75	0.0060	0.10		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.29"					
2.4	100	0.0100	0.70		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
1.2	80	0.0250	1.11		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
16.0	255	Total								

Subcatchment 40S: Proposed to South

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 50S: Proposed to WQB

Runoff = 4.90 cfs @ 11.96 hrs, Volume= 9,651 cf, Depth= 3.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

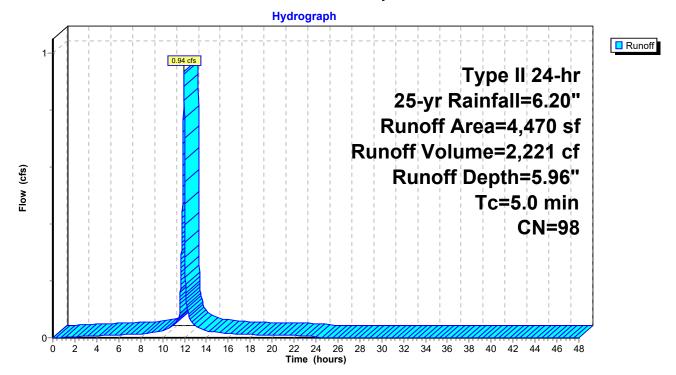
A	rea (sf)	CN [Description						
	34,530	74 >	>75% Grass cover, Good, HSG C						
	34,530 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				

Subcatchment 50S: Proposed to WQB

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 81S: Proposed to YD 1

Runoff = 0.94 cfs @ 11.96 hrs, Volume= 2,221 cf, Depth= 5.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

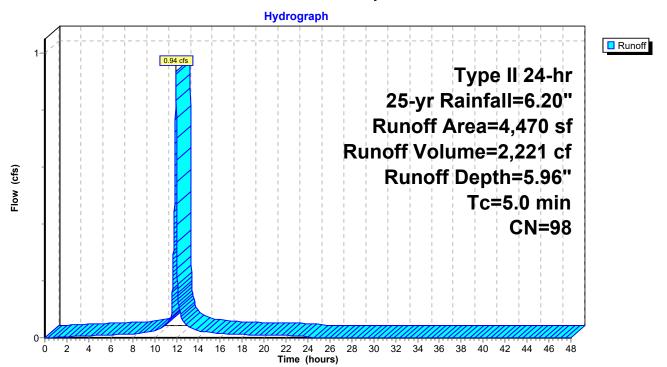
	Α	rea (sf)	CN	Description		
*		3,200	98	Roof		
*		1,270	98	Paved		
		4,470 4,470	98	Weighted A 100.00% Im		Area
_	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
	5.0					Direct Entry,

Subcatchment 81S: Proposed to YD 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 82S: Proposed to YD 2

Runoff = 0.94 cfs @ 11.96 hrs, Volume= 2,221 cf, Depth= 5.96"

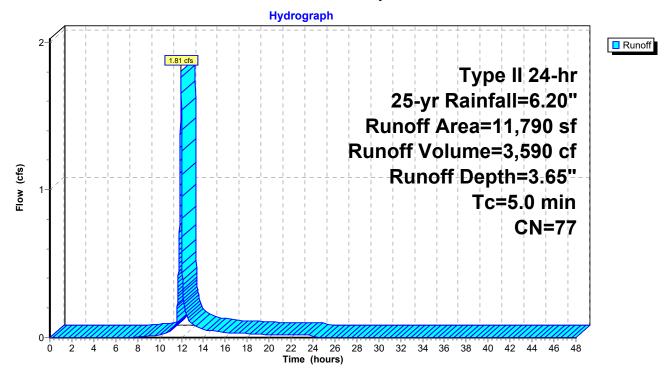
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

	Α	rea (sf)	CN	Description		
*		3,200	98	Roof		
*		1,270	98	Paved		
		4,470 4,470	98	Weighted A 100.00% Im		Area
	Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
_	5.0					Direct Entry,

Subcatchment 82S: Proposed to YD 2

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 83S: Proposed to YD 3

Runoff = 1.81 cfs @ 11.96 hrs, Volume= 3,590 cf, Depth= 3.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=6.20"

_	Area	(sf) CI	N D	escription		
*	1,	420 9	8 Pa	Paved		
	10,	370 7	'4 >ī	75% Grass	s cover, Go	Good, HSG C
_	11,	790 7	7 W	eighted A	verage	
	10,	370				a
	1,	420	12	2.04% Imp	ervious Ar	rea
	Tc Le	ngth S	Slope	Velocity	Capacity	Description
_	(min) (feet) ((ft/ft)	(ft/sec)	(cfs)	<u> </u>
	5.0					Direct Entry.

Subcatchment 83S: Proposed to YD 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 11P: CB 1

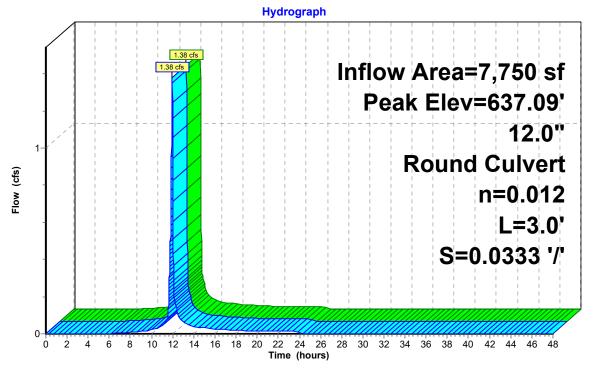
Inflow Area = 7,750 sf, 41.81% Impervious, Inflow Depth = 4.38" for 25-yr event

Inflow = 1.38 cfs @ 11.96 hrs, Volume= 2,831 cf

Outflow = 1.38 cfs @ 11.96 hrs, Volume= 2,831 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.38 cfs @ 11.96 hrs, Volume= 2,831 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 637.09' @ 11.96 hrs

Flood Elev= 639.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	636.40'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 636.40' / 636.30' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.38 cfs @ 11.96 hrs HW=637.09' (Free Discharge) 1=Culvert (Barrel Controls 1.38 cfs @ 3.34 fps)

Pond 11P: CB 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 12P: CB 2

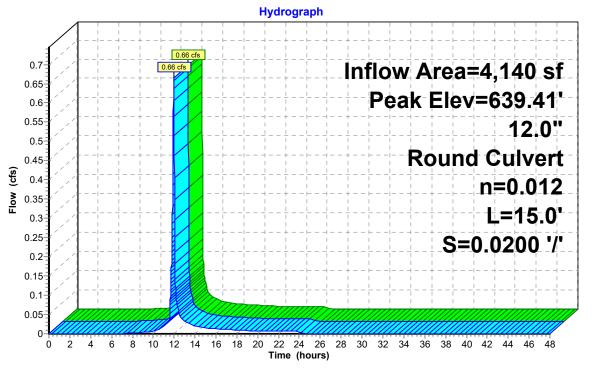
Inflow Area = 4,140 sf, 22.46% Impervious, Inflow Depth = 3.86" for 25-yr event

Inflow = 0.66 cfs @ 11.96 hrs, Volume= 1,331 cf

Outflow = 0.66 cfs @ 11.96 hrs, Volume= 1,331 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.66 cfs @ 11.96 hrs, Volume= 1,331 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 639.41' @ 11.96 hrs

Flood Elev= 642.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	639.00'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 639.00' / 638.70' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.66 cfs @ 11.96 hrs HW=639.41' (Free Discharge) 1=Culvert (Inlet Controls 0.66 cfs @ 2.18 fps)

Pond 12P: CB 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

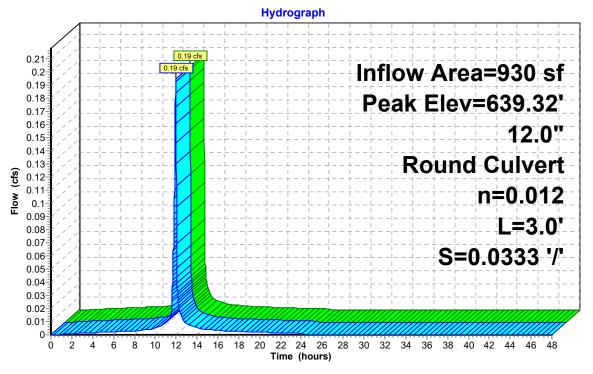
Summary for Pond 13P: CB 3

Inflow Area = 930 sf,100.00% Impervious, Inflow Depth = 5.96" for 25-yr event

Inflow = 0.19 cfs @ 11.96 hrs, Volume= 462 cf

Outflow = 0.19 cfs @ 11.96 hrs, Volume= 462 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.19 cfs @ 11.96 hrs, Volume= 462 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 639.32' @ 11.96 hrs

Flood Elev= 642.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	639.10'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 639.10' / 639.00' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.19 cfs @ 11.96 hrs HW=639.32' (Free Discharge) 1=Culvert (Barrel Controls 0.19 cfs @ 2.36 fps)

Pond 13P: CB 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 14P: CB 4

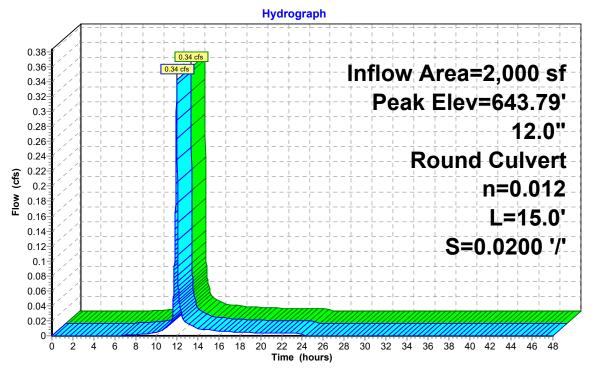
Inflow Area = 2,000 sf, 34.50% Impervious, Inflow Depth = 4.17" for 25-yr event

Inflow = 0.34 cfs @ 11.96 hrs, Volume= 695 cf

Outflow = 0.34 cfs @ 11.96 hrs, Volume= 695 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.34 cfs @ 11.96 hrs, Volume= 695 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.79' @ 11.96 hrs

Flood Elev= 647.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	643.50'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 643.50' / 643.20' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.34 cfs @ 11.96 hrs HW=643.79' (Free Discharge) 1=Culvert (Inlet Controls 0.34 cfs @ 1.83 fps)

Pond 14P: CB 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 15P: CB 5

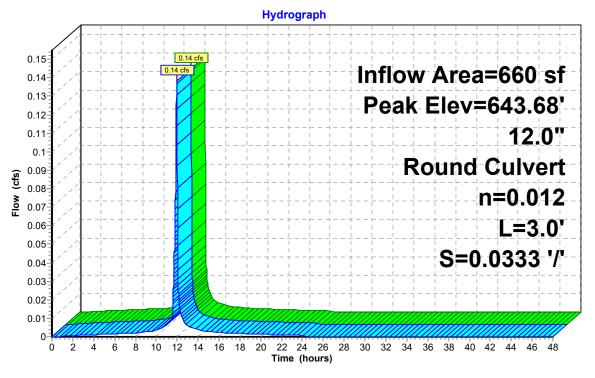
Inflow Area = 660 sf,100.00% Impervious, Inflow Depth = 5.96" for 25-yr event

Inflow = 0.14 cfs @ 11.96 hrs, Volume= 328 cf

Outflow = 0.14 cfs @ 11.96 hrs, Volume= 328 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.14 cfs @ 11.96 hrs, Volume= 328 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.68' @ 11.96 hrs

Flood Elev= 647.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	643.50'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 643.50' / 643.40' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.14 cfs @ 11.96 hrs HW=643.68' (Free Discharge) 1=Culvert (Inlet Controls 0.14 cfs @ 1.44 fps)

Pond 15P: CB 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 16P: CB 6

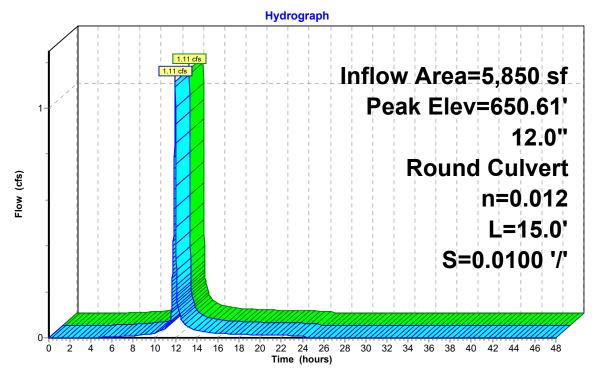
Inflow Area = 5,850 sf, 56.41% Impervious, Inflow Depth = 4.82" for 25-yr event

Inflow = 1.11 cfs @ 11.96 hrs, Volume= 2,349 cf

Outflow = 1.11 cfs @ 11.96 hrs, Volume= 2,349 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.11 cfs @ 11.96 hrs, Volume= 2,349 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.61' @ 11.96 hrs

Flood Elev= 651.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.00'	12.0" Round Culvert L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.00' / 649.85' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.11 cfs @ 11.96 hrs HW=650.61' (Free Discharge) 1=Culvert (Barrel Controls 1.11 cfs @ 3.17 fps)

Pond 16P: CB 6

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

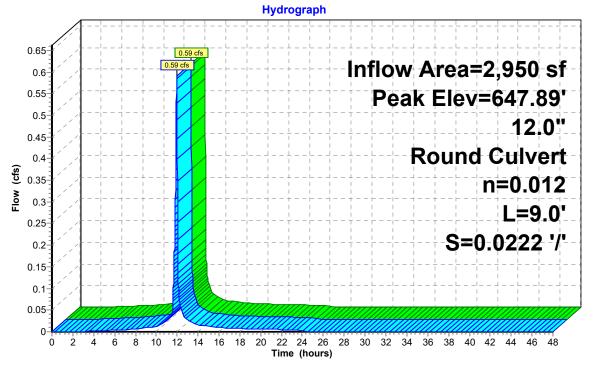
Summary for Pond 17P: CB 7

Inflow Area = 2,950 sf, 74.92% Impervious, Inflow Depth = 5.27" for 25-yr event

Inflow = 0.59 cfs @ 11.96 hrs, Volume= 1,295 cf

Outflow = 0.59 cfs @ 11.96 hrs, Volume= 1,295 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.59 cfs @ 11.96 hrs, Volume= 1,295 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 647.89' @ 11.96 hrs

Flood Elev= 651.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	647.50'	12.0" Round Culvert
	_		L= 9.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 647.50' / 647.30' S= 0.0222 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.59 cfs @ 11.96 hrs HW=647.89' (Free Discharge) 1=Culvert (Inlet Controls 0.59 cfs @ 2.11 fps)

Pond 17P: CB 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 18P: CB 8

[58] Hint: Peaked 0.43' above defined flood level

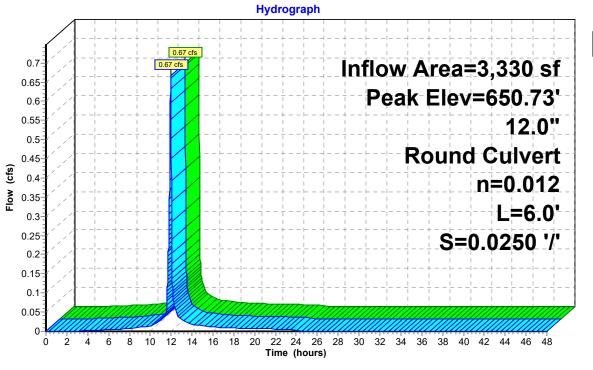
Inflow Area = 3,330 sf, 75.98% Impervious, Inflow Depth = 5.27" for 25-yr event

Inflow = 0.67 cfs @ 11.96 hrs, Volume= 1,461 cf

Outflow = 0.67 cfs @ 11.96 hrs, Volume= 1,461 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.67 cfs @ 11.96 hrs, Volume= 1,461 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.73' @ 11.96 hrs

Flood Elev= 650.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.30'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.30' / 650.15' S= 0.0250 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.67 cfs @ 11.96 hrs HW=650.73' (Free Discharge) 1=Culvert (Barrel Controls 0.67 cfs @ 3.07 fps)

Pond 18P: CB 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 19P: CB 9

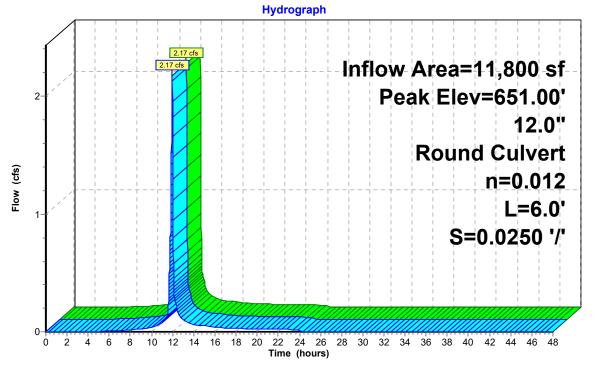
Inflow Area = 11,800 sf, 50.17% Impervious, Inflow Depth = 4.60" for 25-yr event

Inflow = 2.17 cfs @ 11.96 hrs, Volume= 4,523 cf

Outflow = 2.17 cfs @ 11.96 hrs, Volume= 4,523 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.17 cfs @ 11.96 hrs, Volume= 4,523 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 651.00' @ 11.96 hrs

Flood Elev= 653.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.10'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.10' / 649.95' S= 0.0250 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.17 cfs @ 11.96 hrs HW=651.00' (Free Discharge) 1=Culvert (Barrel Controls 2.17 cfs @ 3.85 fps)

Pond 19P: CB 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 40P: HDS Unit

[79] Warning: Submerged Pond 69P Primary device # 1 INLET by 1.96'

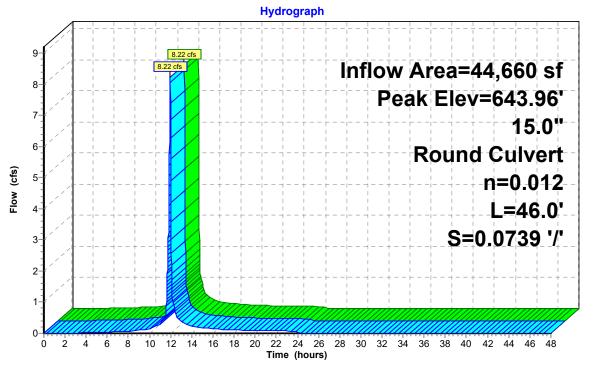
Inflow Area = 44,660 sf, 54.46% Impervious, Inflow Depth = 4.75" for 25-yr event

Inflow = 8.22 cfs @ 11.96 hrs, Volume= 17,660 cf

Outflow = 8.22 cfs @ 11.96 hrs, Volume= 17,660 cf, Atten= 0%, Lag= 0.0 min

Primary = 8.22 cfs @ 11.96 hrs, Volume= 17,660 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.96' @ 11.96 hrs

Flood Elev= 653.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	641.40'	15.0" Round Culvert
			L= 46.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 641.40' / 638.00' S= 0.0739 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=8.21 cfs @ 11.96 hrs HW=643.95' (Free Discharge) 1=Culvert (Inlet Controls 8.21 cfs @ 6.69 fps)

Pond 40P: HDS Unit

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 127

Summary for Pond 50P: WQB

[79] Warning: Submerged Pond 40P Primary device # 1 OUTLET by 2.86'

Inflow Area = 79,190 sf, 30.71% Impervious, Inflow Depth = 4.14" for 25-yr event

Inflow = 13.12 cfs @ 11.96 hrs, Volume= 27,310 cf

0.55 cfs @ 13.27 hrs, Volume= 0.55 cfs @ 13.27 hrs, Volume= Outflow = 22,917 cf, Atten= 96%, Lag= 78.8 min

Primary 22.917 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 640.86' @ 13.27 hrs Surf.Area= 8,291 sf Storage= 16,741 cf

Flood Elev= 644.00' Surf.Area= 14,157 sf Storage= 51,826 cf

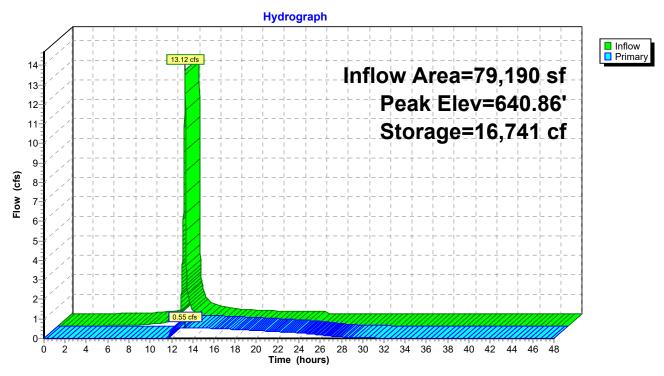
Plug-Flow detention time= 404.0 min calculated for 22,912 cf (84% of inflow)

Center-of-Mass det. time= 331.8 min (1,127.1 - 795.2)

Volume	Inve	ert Avail	.Storage	Storage Descriptio	n	
#1	638.0	00' 5	51,826 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
638.0	00	3,553	532.6	0	0	3,553
640.0	00	6,861	570.3	10,234	10,234	7,041
642.0	00	10,396	608.0	17,135	27,369	10,767
644.0	00	14,157	645.7	24,456	51,826	14,732
Device	Routing	Inv	ert Outle	et Devices		
#1	Primary	638	.00' 12.0	" Round Culvert		
#2	Device 1	639.	Inlet n= 0	0.0' CPP, square 6 / Outlet Invert= 638 .012, Flow Area= 0 Vert. Orifice/Grate	.00' / 637.10' S= 0 .79 sf	= 0.500 0.0100 '/'
#3	Device 1		.15' 6.0' Hea	long x 0.5' breadtl d (feet) 0.20 0.40	n Broad-Crested R 0.60 0.80 1.00	_
			Coef	f. (English) 2.80 2.9	92 3.08 3.30 3.32	

Primary OutFlow Max=0.55 cfs @ 13.27 hrs HW=640.86' (Free Discharge)

-1=Culvert (Passes 0.55 cfs of 5.30 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.55 cfs @ 6.27 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

076491 Nichols Townhouses

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Pond 50P: WQB

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 61P: DMH 1

[79] Warning: Submerged Pond 62P Primary device # 1 INLET by 0.08'

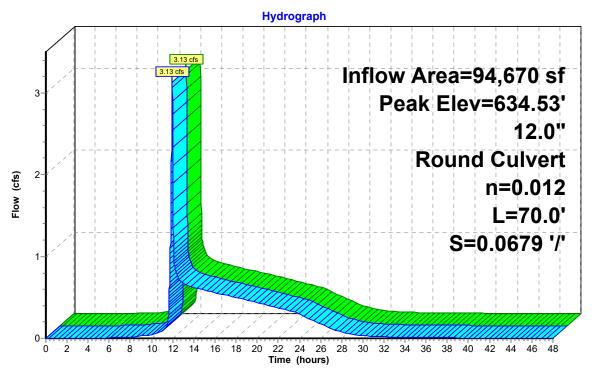
Inflow Area = 94,670 sf, 32.50% Impervious, Inflow Depth > 3.62" for 25-yr event

Inflow = 3.13 cfs @ 11.96 hrs, Volume= 28,565 cf

Outflow = 3.13 cfs @ 11.96 hrs, Volume= 28,565 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.13 cfs @ 11.96 hrs, Volume= 28,565 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 634.53' @ 11.96 hrs

Flood Elev= 639.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	633.35'	12.0" Round Culvert
			L= 70.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 633.35' / 628.60' S= 0.0679 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=3.13 cfs @ 11.96 hrs HW=634.53' (Free Discharge) 1=Culvert (Inlet Controls 3.13 cfs @ 3.98 fps)

Pond 61P: DMH 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 62P: DMH 2

[79] Warning: Submerged Pond 63P Primary device # 1 INLET by 0.28'

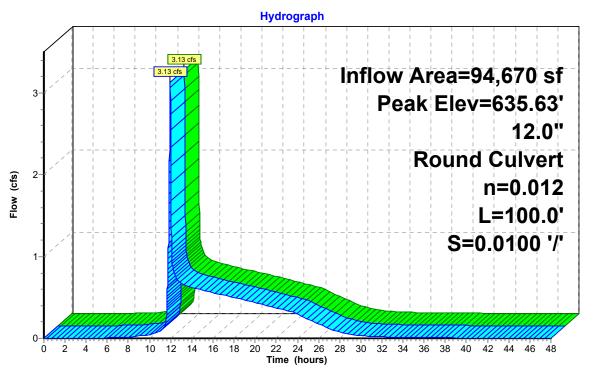
Inflow Area = 94,670 sf, 32.50% Impervious, Inflow Depth > 3.62" for 25-yr event

Inflow = 3.13 cfs @ 11.96 hrs, Volume= 28,565 cf

Outflow = 3.13 cfs @ 11.96 hrs, Volume= 28,565 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.13 cfs @ 11.96 hrs, Volume= 28,565 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 635.63' @ 11.96 hrs

Flood Elev= 640.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	634.45'	12.0" Round Culvert
			L= 100.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 634.45' / 633.45' S= 0.0100 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=3.13 cfs @ 11.96 hrs HW=635.63' (Free Discharge) 1=Culvert (Inlet Controls 3.13 cfs @ 3.98 fps)

Pond 62P: DMH 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 63P: DMH 3

[79] Warning: Submerged Pond 64P Primary device # 1 OUTLET by 0.62'

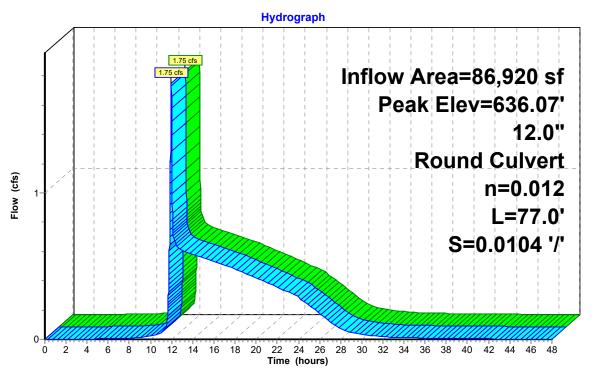
Inflow Area = 86,920 sf, 31.67% Impervious, Inflow Depth > 3.55" for 25-yr event

Inflow = 1.75 cfs @ 11.96 hrs, Volume= 25,733 cf

Outflow = 1.75 cfs @ 11.96 hrs, Volume= 25,733 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.75 cfs @ 11.96 hrs, Volume= 25,733 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 636.07' @ 11.96 hrs

Flood Elev= 642.70'

Device	Routing	Invert	Outlet Devices
#1	Primary	635.35'	12.0" Round Culvert L= 77.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 635.35' / 634.55' S= 0.0104 '/' Cc= 0.900 n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=1.75 cfs @ 11.96 hrs HW=636.07' (Free Discharge) 1=Culvert (Inlet Controls 1.75 cfs @ 2.89 fps)

Pond 63P: DMH 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 64P: DMH 4

[79] Warning: Submerged Pond 65P Primary device # 1 OUTLET by 0.38'

Inflow Area = 81,850 sf, 31.36% Impervious, Inflow Depth > 3.51" for 25-yr event

Inflow = 0.90 cfs @ 11.97 hrs, Volume= 23,940 cf

Outflow = 0.90 cfs @ 11.97 hrs, Volume= 23,940 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.90 cfs @ 11.97 hrs, Volume= 23,940 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Peak Elev= 636.68' @ 11.97 hrs

Flood Elev= 647.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	636.20'	12.0" Round Culvert L= 75.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 636.20' / 635.45' S= 0.0100 '/' Cc= 0.900
#1	Primary	636.20'	L= 75.0' CPP, square edge headwall, Ke= 0.500

Primary OutFlow Max=0.89 cfs @ 11.97 hrs HW=636.68' (Free Discharge)
1=Culvert (Inlet Controls 0.89 cfs @ 2.37 fps)

Pond 64P: DMH 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 65P: DMH 5

[79] Warning: Submerged Pond 50P Primary device # 1 OUTLET by 0.26'

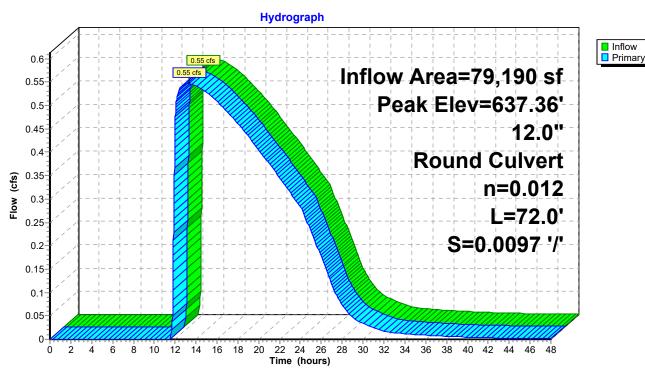
Inflow Area = 79,190 sf, 30.71% Impervious, Inflow Depth > 3.47" for 25-yr event

Inflow = 0.55 cfs @ 13.27 hrs, Volume= 22,917 cf

Outflow = 0.55 cfs @ 13.27 hrs, Volume= 22,917 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.55 cfs @ 13.27 hrs, Volume= 22,917 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 637.36' @ 13.27 hrs

Flood Elev= 651.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	637.00'	12.0" Round Culvert L= 72.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 637.00' / 636.30' S= 0.0097 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.53 cfs @ 13.27 hrs HW=637.36' (Free Discharge)
1=Culvert (Inlet Controls 0.53 cfs @ 2.06 fps)

Pond 65P: DMH 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 66P: DMH 6

[79] Warning: Submerged Pond 17P Primary device # 1 INLET by 0.34'

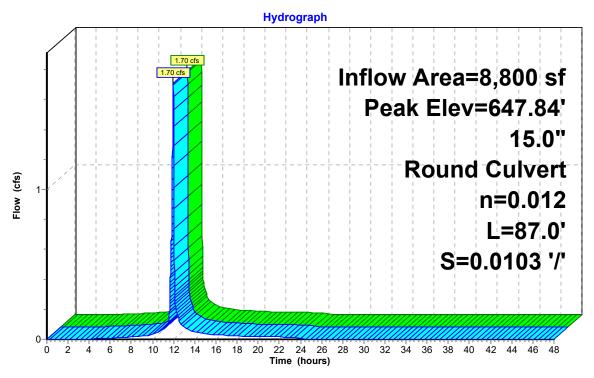
Inflow Area = 8,800 sf, 62.61% Impervious, Inflow Depth = 4.97" for 25-yr event

Inflow = 1.70 cfs @ 11.96 hrs, Volume= 3,644 cf

Outflow = 1.70 cfs @ 11.96 hrs, Volume= 3,644 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.70 cfs @ 11.96 hrs, Volume= 3,644 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 647.84' @ 11.96 hrs

Flood Elev= 651.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	647.20'	15.0" Round Culvert L= 87.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 647.20' / 646.30' S= 0.0103 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=1.70 cfs @ 11.96 hrs HW=647.84' (Free Discharge) 1=Culvert (Inlet Controls 1.70 cfs @ 2.71 fps)

Pond 66P: DMH 6

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 67P: DMH 7

[79] Warning: Submerged Pond 66P Primary device # 1 OUTLET by 0.67'

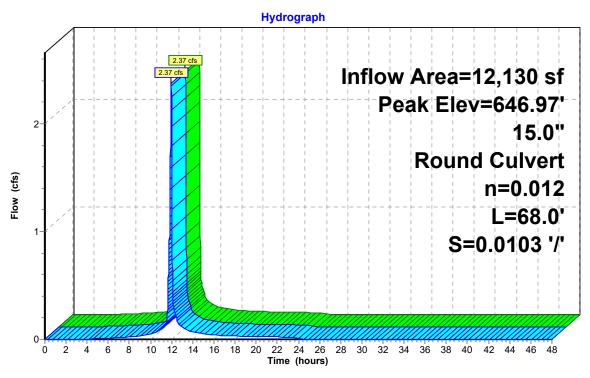
Inflow Area = 12,130 sf, 66.28% Impervious, Inflow Depth = 5.05" for 25-yr event

Inflow = 2.37 cfs @ 11.96 hrs, Volume= 5,105 cf

Outflow = 2.37 cfs @ 11.96 hrs, Volume= 5,105 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.37 cfs @ 11.96 hrs, Volume= 5,105 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 646.97' @ 11.96 hrs

Flood Elev= 654.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	646.20'	15.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 646.20' / 645.50' S= 0.0103 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=2.36 cfs @ 11.96 hrs HW=646.97' (Free Discharge)
1=Culvert (Inlet Controls 2.36 cfs @ 2.99 fps)

Pond 67P: DMH 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 68P: DMH 8

[79] Warning: Submerged Pond 67P Primary device # 1 INLET by 0.45'

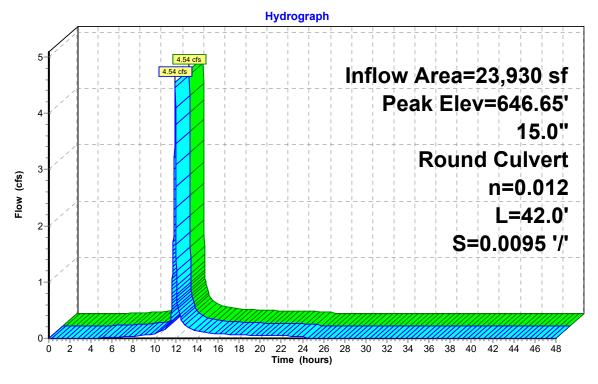
Inflow Area = 23,930 sf, 58.34% Impervious, Inflow Depth = 4.83" for 25-yr event

Inflow = 4.54 cfs @ 11.96 hrs, Volume= 9,628 cf

Outflow = 4.54 cfs @ 11.96 hrs, Volume= 9,628 cf, Atten= 0%, Lag= 0.0 min

Primary = 4.54 cfs @ 11.96 hrs, Volume= 9,628 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 646.65' @ 11.96 hrs

Flood Elev= 654.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	645.40'	15.0" Round Culvert
			L= 42.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 645.40' / 645.00' S= 0.0095 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=4.54 cfs @ 11.96 hrs HW=646.65' (Free Discharge)
1=Culvert (Barrel Controls 4.54 cfs @ 4.62 fps)

Pond 68P: DMH 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 69P: DMH 9

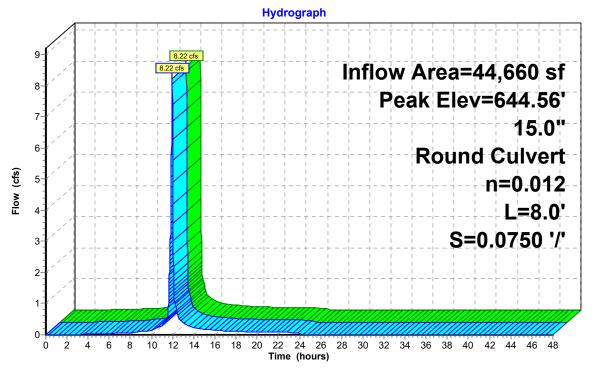
Inflow Area = 44,660 sf, 54.46% Impervious, Inflow Depth = 4.75" for 25-yr event

Inflow = 8.22 cfs @ 11.96 hrs, Volume= 17,660 cf

Outflow = 8.22 cfs @ 11.96 hrs, Volume= 17,660 cf, Atten= 0%, Lag= 0.0 min

Primary = 8.22 cfs @ 11.96 hrs, Volume= 17,660 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 644.56' @ 11.96 hrs

Flood Elev= 654.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	642.00'	15.0" Round Culvert
	-		L= 8.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 642.00' / 641.40' S= 0.0750 '/' Cc= 0.900
			n= 0.012 Flow Area= 1.23 sf

Primary OutFlow Max=8.21 cfs @ 11.96 hrs HW=644.55' (Free Discharge) 1=Culvert (Inlet Controls 8.21 cfs @ 6.69 fps)

Pond 69P: DMH 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 70P: DMH 10

[79] Warning: Submerged Pond 71P Primary device # 1 OUTLET by 1.35'

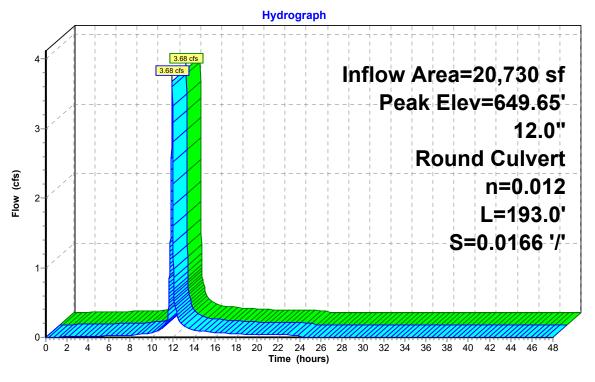
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 4.65" for 25-yr event

Inflow = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf

Outflow = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 649.65' @ 11.96 hrs

Flood Elev= 655.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	648.20'	12.0" Round Culvert
			L= 193.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 648.20' / 645.00' S= 0.0166 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=3.67 cfs @ 11.96 hrs HW=649.64' (Free Discharge)
1=Culvert (Inlet Controls 3.67 cfs @ 4.68 fps)

Pond 70P: DMH 10

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 71P: DMH 11

[79] Warning: Submerged Pond 83P Primary device # 1 INLET by 0.34'

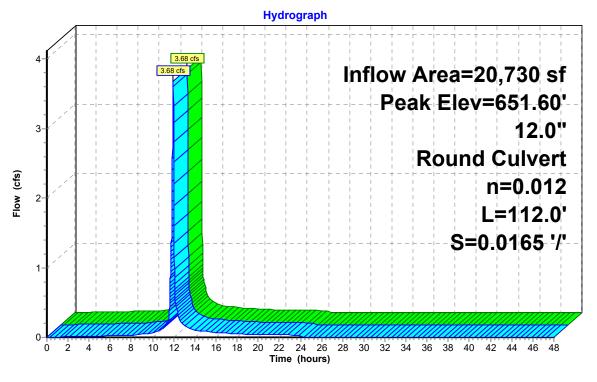
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 4.65" for 25-yr event

Inflow = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf

Outflow = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 651.60' @ 11.96 hrs

Flood Elev= 655.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.15'	12.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 650.15' / 648.30' S= 0.0165 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=3.67 cfs @ 11.96 hrs HW=651.59' (Free Discharge)
1=Culvert (Inlet Controls 3.67 cfs @ 4.67 fps)

Pond 71P: DMH 11

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 81P: YD 1

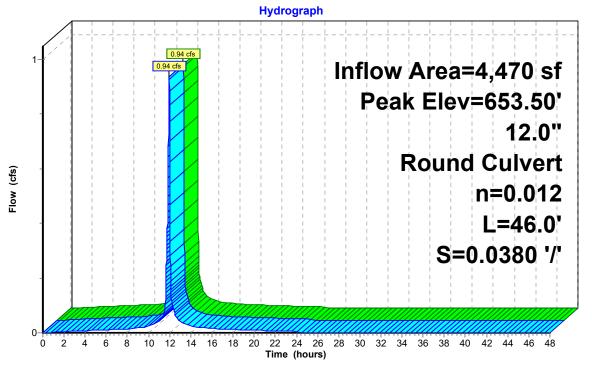
Inflow Area = 4,470 sf,100.00% Impervious, Inflow Depth = 5.96" for 25-yr event

Inflow = 0.94 cfs @ 11.96 hrs, Volume= 2,221 cf

Outflow = 0.94 cfs @ 11.96 hrs, Volume= 2,221 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.94 cfs @ 11.96 hrs, Volume= 2,221 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 653.50' @ 11.96 hrs

Flood Elev= 656.50'

Device	Routing	Invert	Outlet Devices
	Primary	653.00'	12.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 653.00' / 651.25' S= 0.0380 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.93 cfs @ 11.96 hrs HW=653.50' (Free Discharge) 1=Culvert (Inlet Controls 0.93 cfs @ 2.40 fps)

Pond 81P: YD 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 82P: YD 2

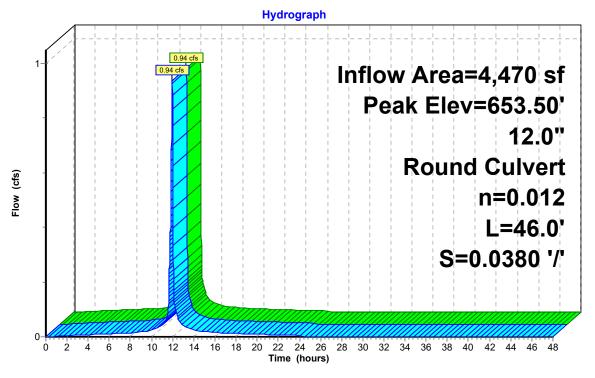
Inflow Area = 4,470 sf,100.00% Impervious, Inflow Depth = 5.96" for 25-yr event

Inflow = 0.94 cfs @ 11.96 hrs, Volume= 2,221 cf

Outflow = 0.94 cfs @ 11.96 hrs, Volume= 2,221 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.94 cfs @ 11.96 hrs, Volume= 2,221 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 653.50' @ 11.96 hrs

Flood Elev= 656.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	653.00'	12.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 653.00' / 651.25' S= 0.0380 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.93 cfs @ 11.96 hrs HW=653.50' (Free Discharge) 1=Culvert (Inlet Controls 0.93 cfs @ 2.40 fps)

Pond 82P: YD 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 83P: YD 3

[79] Warning: Submerged Pond 81P Primary device # 1 OUTLET by 1.44'[79] Warning: Submerged Pond 82P Primary device # 1 OUTLET by 1.44'

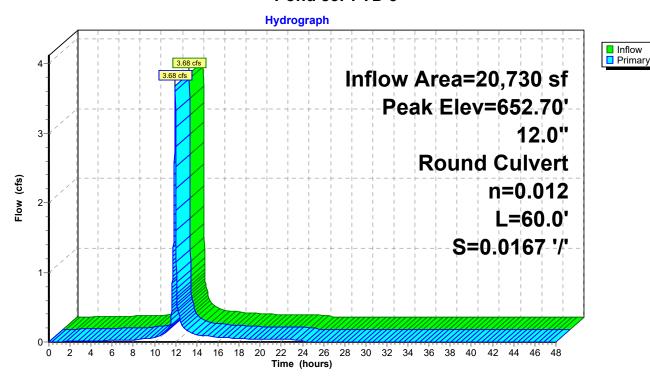
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 4.65" for 25-yr event

Inflow = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf

Outflow = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.68 cfs @ 11.96 hrs, Volume= 8,032 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 652.70' @ 11.96 hrs

Flood Elev= 654.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	651.25'	12.0" Round Culvert L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 651.25' / 650.25' S= 0.0167 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=3.67 cfs @ 11.96 hrs HW=652.69' (Free Discharge) 1=Culvert (Inlet Controls 3.67 cfs @ 4.68 fps)

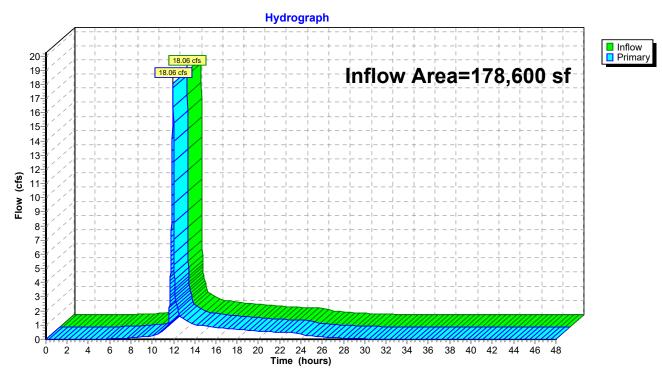
Pond 83P: YD 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Link 10L: Center Road


Inflow Area = 178,600 sf, 37.73% Impervious, Inflow Depth = 3.98" for 25-yr event

Inflow = 18.06 cfs @ 11.96 hrs, Volume= 59,227 cf

Primary = 18.06 cfs @ 11.96 hrs, Volume= 59,227 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Link 10L: Center Road

Proposed Conditions Type II 24-hr 100-yr Rainfall=7.93" Printed 5/23/2022

Page 144

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: Proposed to Center	Runoff Area=83,930 sf 43.63% Impervious Runoff Depth=6.03" Tc=5.0 min CN=84 Runoff=20.12 cfs 42,161 cf
Subcatchment11S: Proposed to CB 1	Runoff Area=7,750 sf 41.81% Impervious Runoff Depth=6.03" Tc=5.0 min CN=84 Runoff=1.86 cfs 3,893 cf
Subcatchment12S: Proposed to CB 2	Runoff Area=4,140 sf 22.46% Impervious Runoff Depth=5.44" Tc=5.0 min CN=79 Runoff=0.92 cfs 1,878 cf
Subcatchment13S: Proposed to CB 3	Runoff Area=930 sf 100.00% Impervious Runoff Depth=7.69" Tc=5.0 min CN=98 Runoff=0.25 cfs 596 cf
Subcatchment14S: Proposed to CB 4	Runoff Area=2,000 sf 34.50% Impervious Runoff Depth=5.79" Tc=5.0 min CN=82 Runoff=0.47 cfs 966 cf
Subcatchment15S: Proposed to CB 5	Runoff Area=660 sf 100.00% Impervious Runoff Depth=7.69" Tc=5.0 min CN=98 Runoff=0.18 cfs 423 cf
Subcatchment16S: Proposed to CB 6	Runoff Area=5,850 sf 56.41% Impervious Runoff Depth=6.50" Tc=5.0 min CN=88 Runoff=1.47 cfs 3,169 cf
Subcatchment17S: Proposed to CB 7	Runoff Area=2,950 sf 74.92% Impervious Runoff Depth=6.97" Tc=5.0 min CN=92 Runoff=0.77 cfs 1,714 cf
Subcatchment18S: Proposed to CB 8	Runoff Area=3,330 sf 75.98% Impervious Runoff Depth=6.97" Tc=5.0 min CN=92 Runoff=0.87 cfs 1,935 cf
Subcatchment19S: Proposed to CB 9	Runoff Area=11,800 sf 50.17% Impervious Runoff Depth=6.26" Tc=5.0 min CN=86 Runoff=2.90 cfs 6,159 cf
Subcatchment20S: Proposed to Northern	Runoff Area=56,570 sf 79.49% Impervious Runoff Depth=7.09" Tc=5.0 min CN=93 Runoff=14.84 cfs 33,438 cf
Subcatchment30S: Proposed to West Flow	Runoff Area=230,400 sf 0.36% Impervious Runoff Depth=4.52" v Length=530' Tc=20.1 min CN=71 Runoff=26.57 cfs 86,755 cf
Subcatchment40S: Proposed to South	Runoff Area=19,030 sf 0.00% Impervious Runoff Depth=4.63" low Length=255' Tc=16.0 min CN=72 Runoff=2.54 cfs 7,347 cf
Subcatchment50S: Proposed to WQB	Runoff Area=34,530 sf 0.00% Impervious Runoff Depth=4.86" Tc=5.0 min CN=74 Runoff=7.00 cfs 13,994 cf
Subcatchment81S: Proposed to YD 1	Runoff Area=4,470 sf 100.00% Impervious Runoff Depth=7.69" Tc=5.0 min CN=98 Runoff=1.20 cfs 2,865 cf
Subcatchment82S: Proposed to YD 2	Runoff Area=4,470 sf 100.00% Impervious Runoff Depth=7.69" Tc=5.0 min CN=98 Runoff=1.20 cfs 2,865 cf

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Subcatchment83S: Propos	ed to YD 3 Runoff Area=11,790 sf 12.04% Impervious Runoff Depth=5.21" Tc=5.0 min CN=77 Runoff=2.53 cfs 5,119 cf
Pond 11P: CB 1	Peak Elev=637.24' Inflow=1.86 cfs 3,893 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=1.86 cfs 3,893 cf
Pond 12P: CB 2	Peak Elev=639.49' Inflow=0.92 cfs 1,878 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0200'/' Outflow=0.92 cfs 1,878 cf
Pond 13P: CB 3	Peak Elev=639.35' Inflow=0.25 cfs 596 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.25 cfs 596 cf
Pond 14P: CB 4	Peak Elev=643.84' Inflow=0.47 cfs 966 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.47 cfs 966 cf
Pond 15P: CB 5	Peak Elev=643.70' Inflow=0.18 cfs 423 cf 12.0" Round Culvert n=0.012 L=3.0' S=0.0333 '/' Outflow=0.18 cfs 423 cf
Pond 16P: CB 6	Peak Elev=650.72' Inflow=1.47 cfs 3,169 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0100'/' Outflow=1.47 cfs 3,169 cf
Pond 17P: CB 7	Peak Elev=647.95' Inflow=0.77 cfs 1,714 cf 12.0" Round Culvert n=0.012 L=9.0' S=0.0222'/' Outflow=0.77 cfs 1,714 cf
Pond 18P: CB 8	Peak Elev=650.80' Inflow=0.87 cfs 1,935 cf 12.0" Round Culvert n=0.012 L=6.0' S=0.0250 '/' Outflow=0.87 cfs 1,935 cf
Pond 19P: CB 9	Peak Elev=651.22' Inflow=2.90 cfs 6,159 cf 12.0" Round Culvert n=0.012 L=6.0' S=0.0250 '/' Outflow=2.90 cfs 6,159 cf
Pond 40P: HDS Unit	Peak Elev=645.45' Inflow=10.94 cfs 23,826 cf 15.0" Round Culvert n=0.012 L=46.0' S=0.0739 '/' Outflow=10.94 cfs 23,826 cf
Pond 50P: WQB	Peak Elev=641.65' Storage=23,857 cf Inflow=17.93 cfs 37,819 cf Outflow=0.66 cfs 33,408 cf
Pond 61P: DMH 1	Peak Elev=635.08' Inflow=4.20 cfs 41,163 cf 12.0" Round Culvert n=0.012 L=70.0' S=0.0679 '/' Outflow=4.20 cfs 41,163 cf
Pond 62P: DMH 2	Peak Elev=636.30' Inflow=4.20 cfs 41,163 cf 12.0" Round Culvert n=0.012 L=100.0' S=0.0100 '/' Outflow=4.20 cfs 41,163 cf
Pond 63P: DMH 3	Peak Elev=636.23' Inflow=2.34 cfs 37,270 cf 12.0" Round Culvert n=0.012 L=77.0' S=0.0104 '/' Outflow=2.34 cfs 37,270 cf
Pond 64P: DMH 4	Peak Elev=636.77' Inflow=1.18 cfs 34,797 cf 12.0" Round Culvert n=0.012 L=75.0' S=0.0100 '/' Outflow=1.18 cfs 34,797 cf
Pond 65P: DMH 5	Peak Elev=637.41' Inflow=0.66 cfs 33,408 cf

12.0" Round Culvert n=0.012 L=72.0' S=0.0097 '/' Outflow=0.66 cfs 33,408 cf

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 146

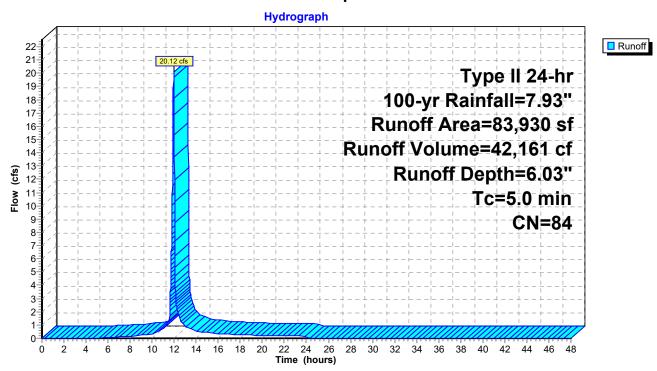
Pond 66P: DMH 6	Peak Elev=647.94' Inflow=2.24 cfs 4,883 cf 15.0" Round Culvert n=0.012 L=87.0' S=0.0103 '/' Outflow=2.24 cfs 4,883 cf
Pond 67P: DMH 7	Peak Elev=647.11' Inflow=3.11 cfs 6,818 cf 15.0" Round Culvert n=0.012 L=68.0' S=0.0103'/' Outflow=3.11 cfs 6,818 cf
Pond 68P: DMH 8	Peak Elev=647.11' Inflow=6.01 cfs 12,978 cf 15.0" Round Culvert n=0.012 L=42.0' S=0.0095 '/' Outflow=6.01 cfs 12,978 cf
Pond 69P: DMH 9	Peak Elev=646.05' Inflow=10.94 cfs 23,826 cf 15.0" Round Culvert n=0.012 L=8.0' S=0.0750 '/' Outflow=10.94 cfs 23,826 cf
Pond 70P: DMH 10	Peak Elev=650.40' Inflow=4.93 cfs 10,848 cf 12.0" Round Culvert n=0.012 L=193.0' S=0.0166 '/' Outflow=4.93 cfs 10,848 cf
Pond 71P: DMH 11	Peak Elev=652.35' Inflow=4.93 cfs 10,848 cf 12.0" Round Culvert n=0.012 L=112.0' S=0.0165 '/' Outflow=4.93 cfs 10,848 cf
Pond 81P: YD 1	Peak Elev=653.57' Inflow=1.20 cfs 2,865 cf 12.0" Round Culvert n=0.012 L=46.0' S=0.0380 '/' Outflow=1.20 cfs 2,865 cf
Pond 82P: YD 2	Peak Elev=653.57' Inflow=1.20 cfs 2,865 cf 12.0" Round Culvert n=0.012 L=46.0' S=0.0380 '/' Outflow=1.20 cfs 2,865 cf
Pond 83P: YD 3	Peak Elev=653.45' Inflow=4.93 cfs 10,848 cf 12.0" Round Culvert n=0.012 L=60.0' S=0.0167 '/' Outflow=4.93 cfs 10,848 cf
Link 10L: Center Road	Inflow=24.31 cfs 83,325 cf Primary=24.31 cfs 83,325 cf

Total Runoff Area = 484,600 sf Runoff Volume = 215,277 cf Average Runoff Depth = 5.33" 76.64% Pervious = 371,420 sf 23.36% Impervious = 113,180 sf

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 10S: Proposed to Center Road

Runoff = 20.12 cfs @ 11.96 hrs, Volume= 42,161 cf, Depth= 6.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

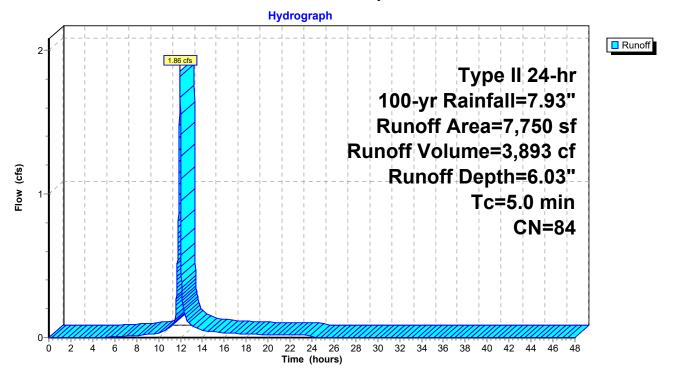
	Area (sf)	CN	Description				
*	36,620	98	Paved				
	38,010	74	>75% Gras	s cover, Go	Good, HSG C		
	9,300	70	Woods, Go	od, HSG C			
	83,930	84	Weighted A	verage			
	47,310		56.37% Pervious Area				
	36,620		43.63% Impervious Area				
Τ.	1	01		0 : 1.	D. contaktion		
To	9	Slop	,	Capacity	·		
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)			
5.0)				Direct Entry,		

Subcatchment 10S: Proposed to Center Road

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 11S: Proposed to CB 1

Runoff = 1.86 cfs @ 11.96 hrs, Volume= 3,893 cf, Depth= 6.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

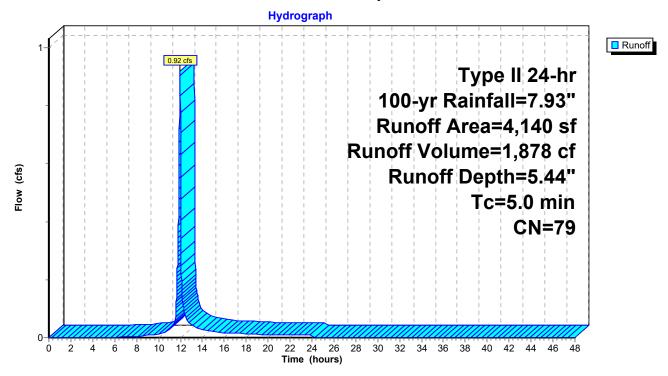
_	Α	rea (sf)	CN	Description						
*		3,240	98	Paved						
		4,510	74	>75% Gras	>75% Grass cover, Good, HSG C					
		7,750	84	Weighted A	Weighted Average					
		4,510		58.19% Pervious Area						
		3,240		41.81% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	/ Description				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 11S: Proposed to CB 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 12S: Proposed to CB 2

Runoff = 0.92 cfs @ 11.96 hrs, Volume= 1,878 cf, Depth= 5.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

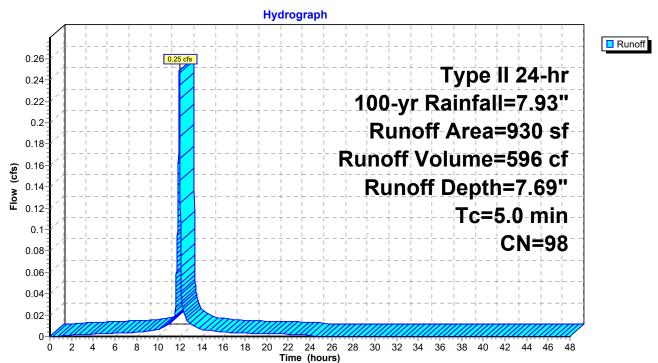
	Α	rea (sf)	CN	Description					
*		930	98	Paved					
		3,210	74	>75% Grass cover, Good, HSG C					
		4,140	79	Weighted A	Weighted Average				
		3,210		77.54% Pervious Area					
		930		22.46% Impervious Area					
	Тс	Length	Slope	e Velocity	Capacity	y Description			
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.0					Direct Entry.			

Subcatchment 12S: Proposed to CB 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 13S: Proposed to CB 3

Runoff = 0.25 cfs @ 11.96 hrs, Volume= 596 cf, Depth= 7.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

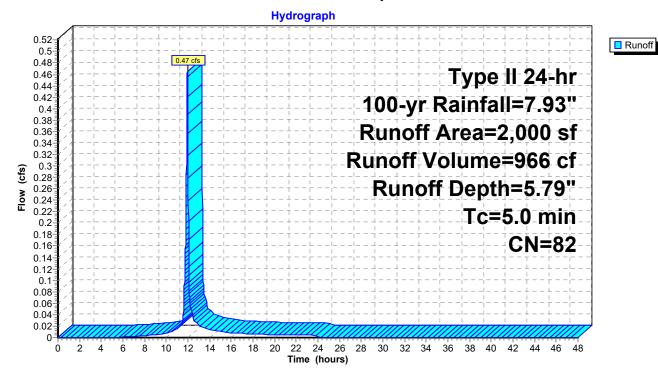
_	Α	rea (sf)	CN [Description			
*		930	98 F	Paved			
_		930	1	100.00% Impervious Area			
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	5.0					Direct Entry,	

Subcatchment 13S: Proposed to CB 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 14S: Proposed to CB 4

Runoff = 0.47 cfs @ 11.96 hrs, Volume= 966 cf, Depth= 5.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

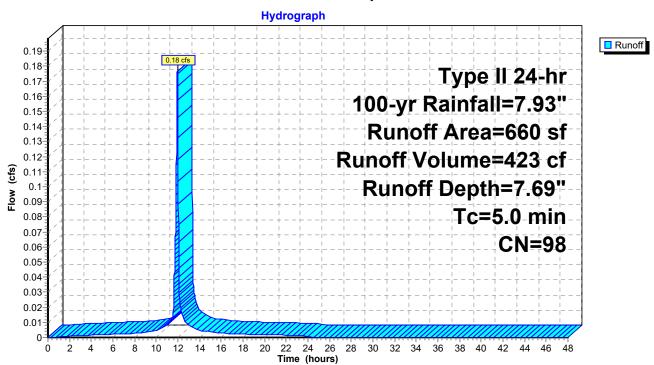
	Α	rea (sf)	CN	Description					
*		690	98	Paved					
_		1,310	74	>75% Grass cover, Good, HSG C					
		2,000	82	Weighted A	Weighted Average				
		1,310		65.50% Pervious Area					
		690		34.50% Impervious Area					
	Тс	Length	Slope	pe Velocity Capacity Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.0			Direct Entry.					

Subcatchment 14S: Proposed to CB 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 15S: Proposed to CB 5

Runoff = 0.18 cfs @ 11.96 hrs, Volume= 423 cf, Depth= 7.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

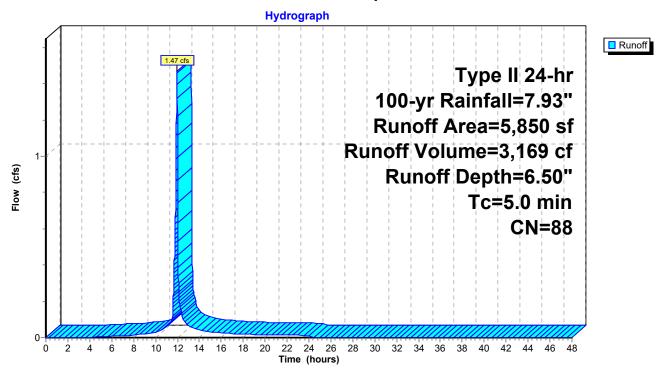
_	Α	rea (sf)	CN [Description						
*		660	98 F	Paved						
		660	1	100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry				

Subcatchment 15S: Proposed to CB 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 16S: Proposed to CB 6

Runoff = 1.47 cfs @ 11.96 hrs, Volume= 3,169 cf, Depth= 6.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

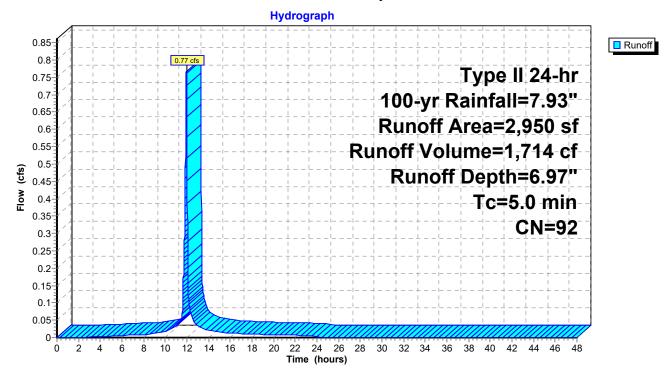
	Α	rea (sf)	CN	Description							
*		3,300	98	Paved							
_		2,550	74	>75% Grass cover, Good, HSG C							
		5,850	88	Weighted A	Veighted Average						
		2,550		43.59% Pervious Area							
		3,300		56.41% lmp	pervious Ar	Area					
	Тс	Length	Slope	e Velocity	Capacity	/ Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·					
	5.0					Direct Entry.					

Subcatchment 16S: Proposed to CB 6

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 17S: Proposed to CB 7

Runoff = 0.77 cfs @ 11.96 hrs, Volume= 1,714 cf, Depth= 6.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

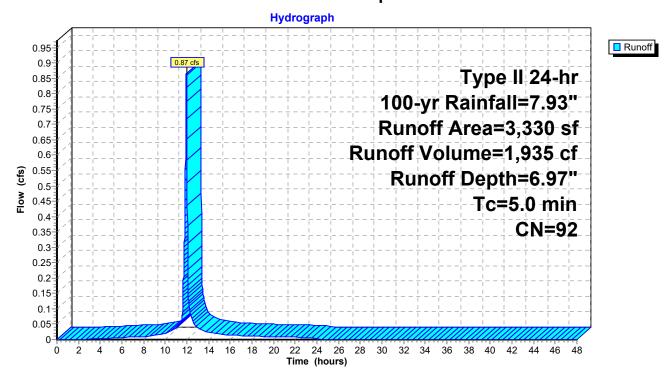
	Α	rea (sf)	CN	Description						
*		2,210	98	Paved						
_		740	74	>75% Grass cover, Good, HSG C						
		2,950	92	Weighted Average						
		740		25.08% Pei	rvious Area	1				
		2,210		74.92% Imp	pervious Ar	rea				
	Тс	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	5.0					Direct Entry,				

Subcatchment 17S: Proposed to CB 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 18S: Proposed to CB 8

Runoff = 0.87 cfs @ 11.96 hrs, Volume= 1,935 cf, Depth= 6.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

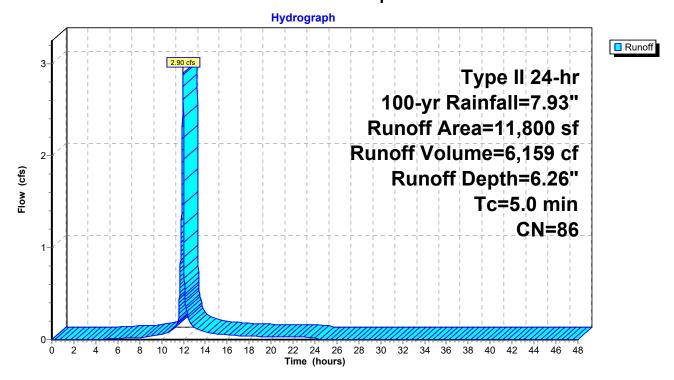
_	Α	rea (sf)	CN	Description							
*		2,530	98	Paved							
_		800	74	>75% Grass cover, Good, HSG C							
		3,330	92	Weighted A	Weighted Average						
		800		24.02% Pervious Area							
		2,530		75.98% Imp	pervious Ar	rea					
	Тс	Length	Slope	e Velocity	Capacity	/ Description					
	(min)	(feet)	(ft/ft	,	(cfs)	•					
	5.0		-			Direct Entry.					

Subcatchment 18S: Proposed to CB 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 19S: Proposed to CB 9

Runoff = 2.90 cfs @ 11.96 hrs, Volume= 6,159 cf, Depth= 6.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

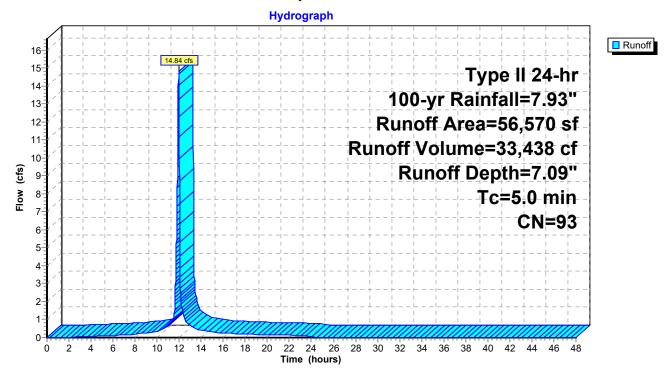
_	Α	rea (sf)	CN	Description							
*		5,920	98	Paved							
_		5,880	74	>75% Grass cover, Good, HSG C							
_		11,800	86	Weighted A	Veighted Average						
		5,880		49.83% Pervious Area							
		5,920		50.17% Imp	ervious Ar	rea					
	Tc	Length	Slope	e Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft	,	(cfs)	!					
-	5.0	(.001)	(1010	, (.3000)	(0.0)	Direct Entry.					

Subcatchment 19S: Proposed to CB 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 20S: Proposed to Northern Detention Basin

Runoff = 14.84 cfs @ 11.96 hrs, Volume= 33,438 cf, Depth= 7.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

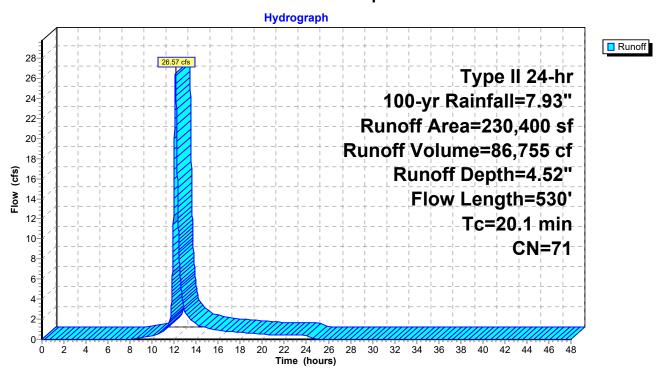
_	Aı	rea (sf)	CN	Description						
*		44,970	98	Paved						
_		11,600	74	>75% Grass cover, Good, HSG C						
_		56,570	93	Weighted Average						
		11,600		20.51% Pervious Area						
		44,970	•	79.49% lmp	pervious Ar	rea				
	Тс	Length	Slope	Velocity	Capacity	/ Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry.				

Subcatchment 20S: Proposed to Northern Detention Basin

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 30S: Proposed to West

Runoff = 26.57 cfs @ 12.13 hrs, Volume= 86,755 cf, Depth= 4.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

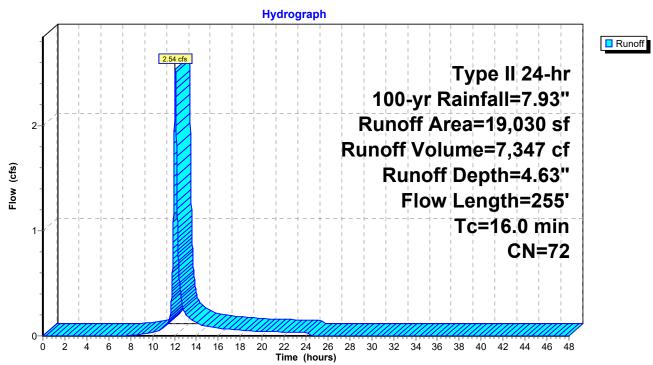
_	Α	rea (sf)	CN E	escription						
*		820	98 F	Paved						
		71,890	74 >	75% Gras	s cover, Go	ood, HSG C				
_	1	57,690	70 V	Voods, Go	od, HSG C					
	2	30,400	71 V	Veighted A	verage					
	2	29,580	9	9.64% Per	vious Area	ľ				
		820	0	.36% Impe	ervious Are	a				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	12.4	75	0.0060	0.10		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.29"				
	5.6	165	0.0050	0.49		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	2.1	290	0.1070	2.29		Shallow Concentrated Flow,				
_						Short Grass Pasture Kv= 7.0 fps				
	20.1	530	Total							

Subcatchment 30S: Proposed to West

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 40S: Proposed to South

Runoff = 2.54 cfs @ 12.08 hrs, Volume= 7,347 cf, Depth= 4.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

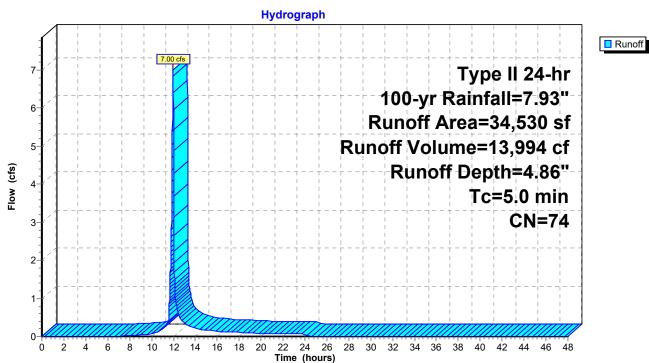
A	rea (sf)	CN [Description		
	10,460	74 >	75% Gras	s cover, Go	ood, HSG C
	8,570	70 \	<u> Voods, Go</u>	<u>od, HSG C</u>	
	19,030	72 \	Veighted A	verage	
	19,030	1	100.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.4	75	0.0060	0.10		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.29"
2.4	100	0.0100	0.70		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.2	80	0.0250	1.11		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
16.0	255	Total			

Subcatchment 40S: Proposed to South

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 50S: Proposed to WQB

Runoff = 7.00 cfs @ 11.96 hrs, Volume= 13,994 cf, Depth= 4.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

A	rea (sf)	CN [Description						
	34,530	74 >	75% Grass cover, Good, HSG C						
	34,530	1	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				

Subcatchment 50S: Proposed to WQB

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 81S: Proposed to YD 1

Runoff = 1.20 cfs @ 11.96 hrs, Volume= 2,865 cf, Depth= 7.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

	Α	rea (sf)	CN	Description		
*		3,200	98	Roof		
*		1,270	98	Paved		
		4,470 4,470	98	Weighted A 100.00% Im	•	Area
	Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
	5.0					Direct Entry,

Subcatchment 81S: Proposed to YD 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 82S: Proposed to YD 2

Runoff = 1.20 cfs @ 11.96 hrs, Volume= 2,865 cf, Depth= 7.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

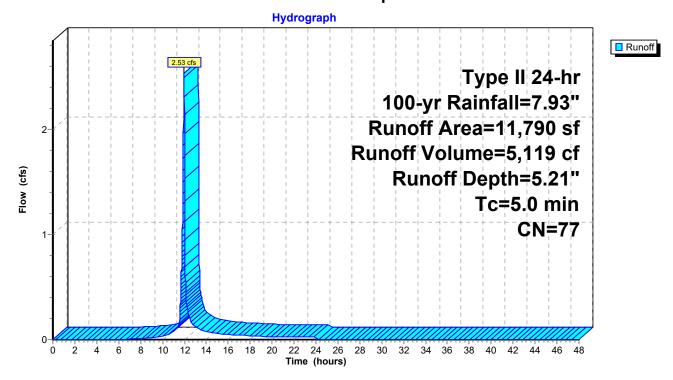
	Α	rea (sf)	CN	Description		
*		3,200	98	Roof		
*		1,270	98	Paved		
		4,470 4,470	98	Weighted A 100.00% In	•	Area
	Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
	5.0	-				Direct Entry,

Subcatchment 82S: Proposed to YD 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC


Summary for Subcatchment 83S: Proposed to YD 3

Runoff = 2.53 cfs @ 11.96 hrs, Volume= 5,119 cf, Depth= 5.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100-yr Rainfall=7.93"

_	Area (sf) CN	Description		
*	1,420	0 98	Paved		
_	10,370	0 74	>75% Gras	s cover, Go	Good, HSG C
	11,790	0 77	Weighted A	verage	
	10,370	0	87.96% Pe	rvious Area	ea
	1,420	0	12.04% lmլ	pervious Ar	Area
	Tc Leng	th Slo		Capacity	y Description
_	(min) (fee	et) (ft/	/ft) (ft/sec)	(cfs)	
	5.0				Direct Entry.

Subcatchment 83S: Proposed to YD 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 11P: CB 1

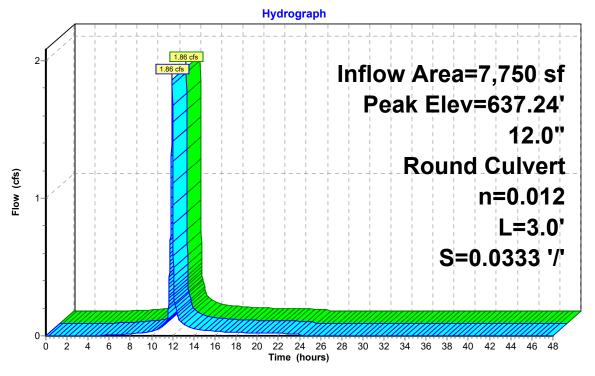
Inflow Area = 7,750 sf, 41.81% Impervious, Inflow Depth = 6.03" for 100-yr event

Inflow = 1.86 cfs @ 11.96 hrs, Volume= 3,893 cf

Outflow = 1.86 cfs @ 11.96 hrs, Volume= 3,893 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.86 cfs @ 11.96 hrs, Volume= 3,893 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 637.24' @ 11.96 hrs

Flood Elev= 639.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	636.40'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 636.40' / 636.30' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.85 cfs @ 11.96 hrs HW=637.24' (Free Discharge) 1=Culvert (Barrel Controls 1.85 cfs @ 3.57 fps)

Pond 11P: CB 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 12P: CB 2

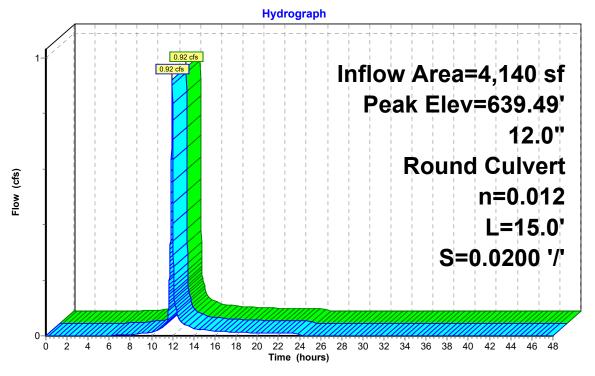
Inflow Area = 4,140 sf, 22.46% Impervious, Inflow Depth = 5.44" for 100-yr event

Inflow = 0.92 cfs @ 11.96 hrs, Volume= 1,878 cf

Outflow = 0.92 cfs @ 11.96 hrs, Volume= 1,878 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.92 cfs @ 11.96 hrs, Volume= 1,878 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 639.49' @ 11.96 hrs

Flood Elev= 642.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	639.00'	12.0" Round Culvert L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 639.00' / 638.70' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.92 cfs @ 11.96 hrs HW=639.49' (Free Discharge) 1=Culvert (Inlet Controls 0.92 cfs @ 2.39 fps)

Pond 12P: CB 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

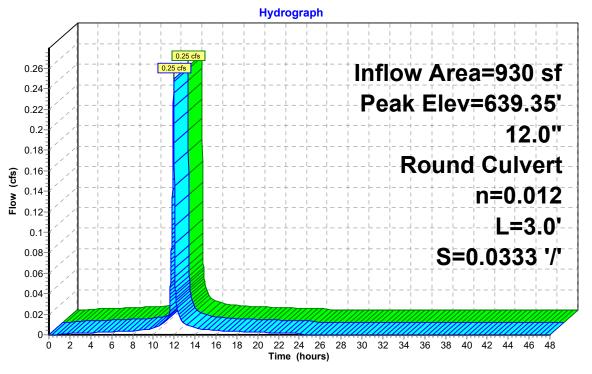
Summary for Pond 13P: CB 3

Inflow Area = 930 sf,100.00% Impervious, Inflow Depth = 7.69" for 100-yr event

Inflow = 0.25 cfs @ 11.96 hrs, Volume= 596 cf

Outflow = 0.25 cfs @ 11.96 hrs, Volume= 596 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.25 cfs @ 11.96 hrs, Volume= 596 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 639.35' @ 11.96 hrs

Flood Elev= 642.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	639.10'	12.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 639.10' / 639.00' S= 0.0333 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.25 cfs @ 11.96 hrs HW=639.35' (Free Discharge) 1=Culvert (Barrel Controls 0.25 cfs @ 2.46 fps)

Pond 13P: CB 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 167

Summary for Pond 14P: CB 4

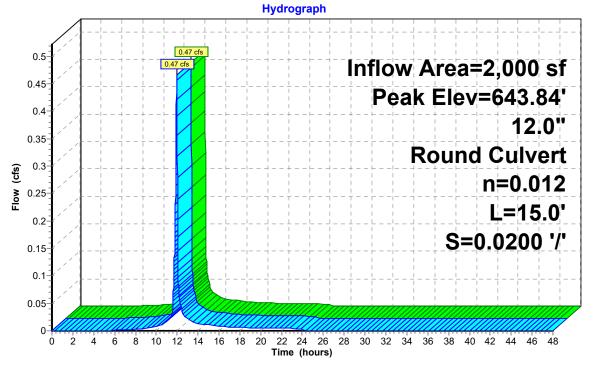
Inflow Area = 2,000 sf, 34.50% Impervious, Inflow Depth = 5.79" for 100-yr event

Inflow = 0.47 cfs @ 11.96 hrs, Volume= 966 cf

Outflow = 0.47 cfs @ 11.96 hrs, Volume= 966 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.47 cfs @ 11.96 hrs, Volume= 966 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 643.84' @ 11.96 hrs

Flood Elev= 647.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	643.50'	12.0" Round Culvert L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 643.50' / 643.20' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.46 cfs @ 11.96 hrs HW=643.84' (Free Discharge) 1=Culvert (Inlet Controls 0.46 cfs @ 1.98 fps)

Pond 14P: CB 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

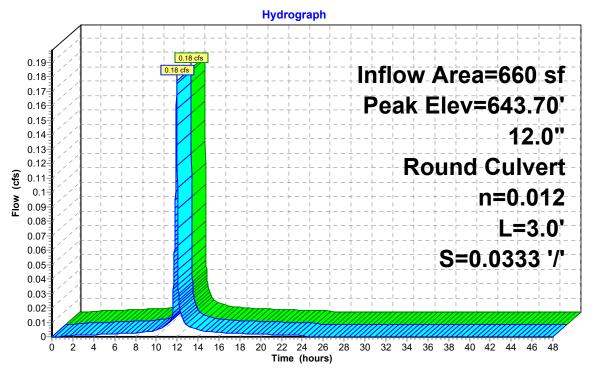
Summary for Pond 15P: CB 5

Inflow Area = 660 sf,100.00% Impervious, Inflow Depth = 7.69" for 100-yr event

Inflow = 0.18 cfs @ 11.96 hrs, Volume= 423 cf

Outflow = 0.18 cfs @ 11.96 hrs, Volume= 423 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.18 cfs @ 11.96 hrs, Volume= 423 cf


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 643.70' @ 11.96 hrs

Flood Elev= 647.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	643.50'	12.0" Round Culvert
	_		L= 3.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 643.50' / 643.40' S= 0.0333 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=0.18 cfs @ 11.96 hrs HW=643.70' (Free Discharge) 1=Culvert (Inlet Controls 0.18 cfs @ 1.54 fps)

Pond 15P: CB 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 16P: CB 6

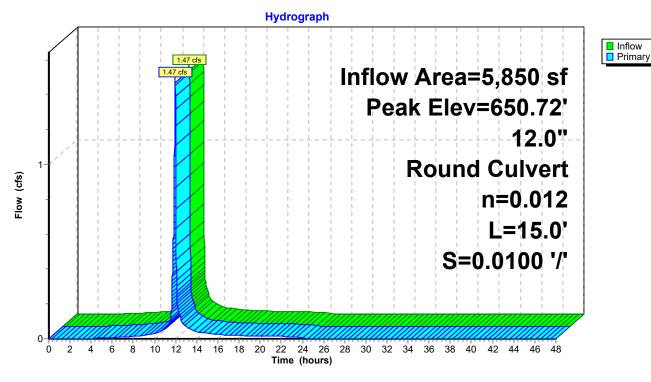
Inflow Area = 5,850 sf, 56.41% Impervious, Inflow Depth = 6.50" for 100-yr event

Inflow = 1.47 cfs @ 11.96 hrs, Volume= 3,169 cf

Outflow = 1.47 cfs @ 11.96 hrs, Volume= 3,169 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.47 cfs @ 11.96 hrs, Volume= 3,169 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.72' @ 11.96 hrs

Flood Elev= 651.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.00'	12.0" Round Culvert L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.00' / 649.85' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.47 cfs @ 11.96 hrs HW=650.72' (Free Discharge) 1=Culvert (Barrel Controls 1.47 cfs @ 3.37 fps)

Pond 16P: CB 6

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 17P: CB 7

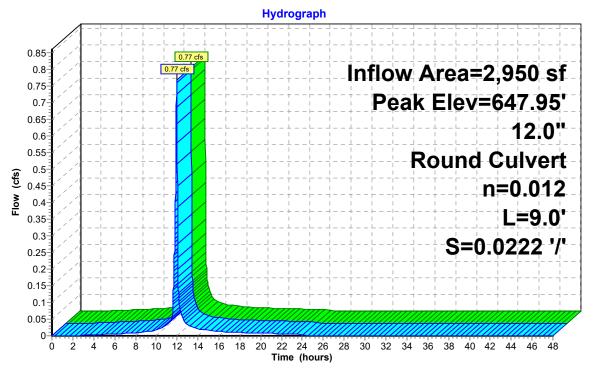
Inflow Area = 2,950 sf, 74.92% Impervious, Inflow Depth = 6.97" for 100-yr event

Inflow = 0.77 cfs @ 11.96 hrs, Volume= 1,714 cf

Outflow = 0.77 cfs @ 11.96 hrs, Volume= 1,714 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.77 cfs @ 11.96 hrs, Volume= 1,714 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 647.95' @ 11.96 hrs

Flood Elev= 651.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	647.50'	12.0" Round Culvert L= 9.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 647.50' / 647.30' S= 0.0222 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.77 cfs @ 11.96 hrs HW=647.95' (Free Discharge) 1=Culvert (Barrel Controls 0.77 cfs @ 3.30 fps)

Pond 17P: CB 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 18P: CB 8

[58] Hint: Peaked 0.50' above defined flood level

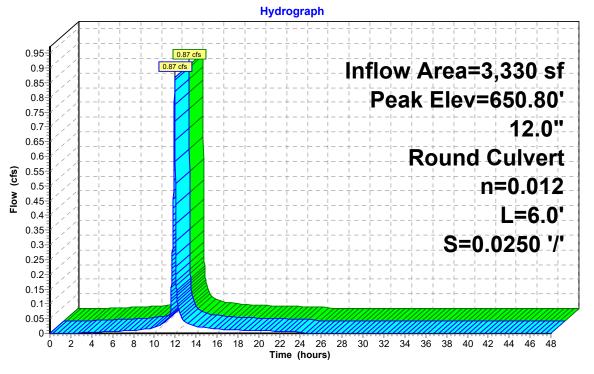
Inflow Area = 3,330 sf, 75.98% Impervious, Inflow Depth = 6.97" for 100-yr event

Inflow = 0.87 cfs @ 11.96 hrs, Volume= 1,935 cf

Outflow = 0.87 cfs @ 11.96 hrs, Volume= 1,935 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.87 cfs @ 11.96 hrs, Volume= 1,935 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.80' @ 11.96 hrs

Flood Elev= 650.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.30'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.30' / 650.15' S= 0.0250 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.87 cfs @ 11.96 hrs HW=650.80' (Free Discharge) 1=Culvert (Barrel Controls 0.87 cfs @ 3.22 fps)

Pond 18P: CB 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 19P: CB 9

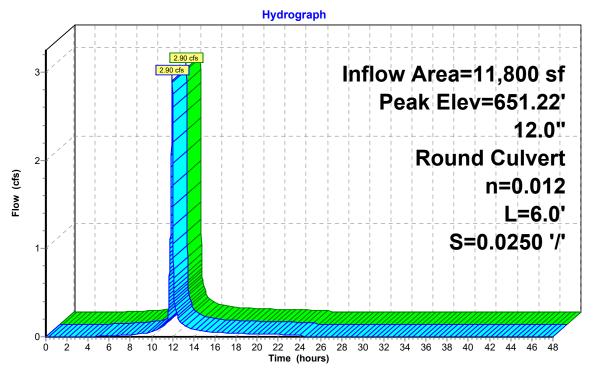
Inflow Area = 11,800 sf, 50.17% Impervious, Inflow Depth = 6.26" for 100-yr event

Inflow = 2.90 cfs @ 11.96 hrs, Volume= 6,159 cf

Outflow = 2.90 cfs @ 11.96 hrs, Volume= 6,159 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.90 cfs @ 11.96 hrs, Volume= 6,159 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 651.22' @ 11.96 hrs

Flood Elev= 653.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.10'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 650.10' / 649.95' S= 0.0250 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.89 cfs @ 11.96 hrs HW=651.22' (Free Discharge) 1=Culvert (Barrel Controls 2.89 cfs @ 4.12 fps)

Pond 19P: CB 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 40P: HDS Unit

[79] Warning: Submerged Pond 69P Primary device # 1 INLET by 3.45'

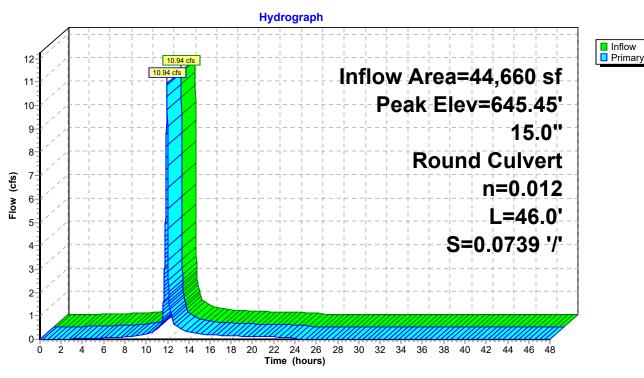
Inflow Area = 44,660 sf, 54.46% Impervious, Inflow Depth = 6.40" for 100-yr event

Inflow = 10.94 cfs @ 11.96 hrs, Volume= 23,826 cf

Outflow = 10.94 cfs @ 11.96 hrs, Volume= 23,826 cf, Atten= 0%, Lag= 0.0 min

Primary = 10.94 cfs @ 11.96 hrs, Volume= 23,826 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 645.45' @ 11.96 hrs

Flood Elev= 653.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	641.40'	15.0" Round Culvert
			L= 46.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 641.40' / 638.00' S= 0.0739 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=10.91 cfs @ 11.96 hrs HW=645.44' (Free Discharge) 1=Culvert (Inlet Controls 10.91 cfs @ 8.89 fps)

Pond 40P: HDS Unit

076491 Nichols Townhouses

Invert

Volume

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Page 174

Summary for Pond 50P: WQB

[79] Warning: Submerged Pond 40P Primary device # 1 INLET by 0.25'

Inflow Area = 79,190 sf, 30.71% Impervious, Inflow Depth = 5.73" for 100-yr event

Inflow = 17.93 cfs @ 11.96 hrs, Volume= 37,819 cf

Outflow = 0.66 cfs @ 13.46 hrs, Volume= 33,408 cf, Atten= 96%, Lag= 90.2 min

Primary = 0.66 cfs @ 13.46 hrs, Volume= 33,408 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 641.65' @ 13.46 hrs Surf.Area= 9,726 sf Storage= 23,857 cf

Flood Elev= 644.00' Surf.Area= 14,157 sf Storage= 51,826 cf

Plug-Flow detention time= 460.4 min calculated for 33,401 cf (88% of inflow)

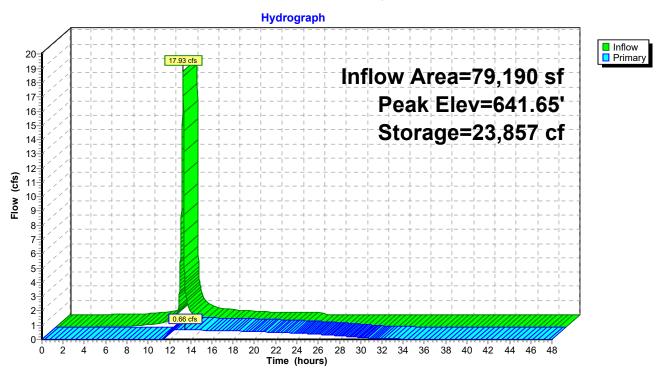
Avail Storage Storage Description

Center-of-Mass det. time= 402.8 min (1,190.7 - 788.0)

volullie	IIIVE	it Avaii.S	olorage	Storage Description	H	
#1	638.0	0' 51	,826 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
638.0 640.0 642.0	00	3,553 6,861 10,396	532.6 570.3 608.0	0 10,234 17,135	0 10,234 27,369	3,553 7,041 10,767
644.0	00	14,157	645.7	24,456	51,826	14,732
Device	Routing	Inve	rt Outl	et Devices		
#1	Primary	638.0	L= 9 Inlet	" Round Culvert 0.0' CPP, square 6 / Outlet Invert= 638 .012, Flow Area= 0	.00' / 637.10' S= 0	0.500 .0100 '/'
#2 #3	Device 1 Device 1	639.00 642.1	0' 4.0" 5' 6.0' Hea	Vert. Orifice/Grate long x 0.5' breadtl d (feet) 0.20 0.40 f. (English) 2.80 2.9	C= 0.600 n Broad-Crested R 0.60 0.80 1.00	ectangular Weir

Primary OutFlow Max=0.66 cfs @ 13.46 hrs HW=641.65' (Free Discharge)

1=Culvert (Passes 0.66 cfs of 6.01 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.66 cfs @ 7.59 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

076491 Nichols Townhouses

Prepared by CHA Companies, Inc. HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Pond 50P: WQB

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 61P: DMH 1

[79] Warning: Submerged Pond 62P Primary device # 1 INLET by 0.63'

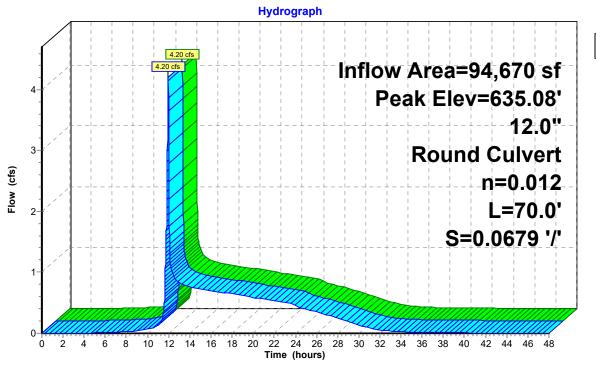
Inflow Area = 94,670 sf, 32.50% Impervious, Inflow Depth > 5.22" for 100-yr event

Inflow = 4.20 cfs @ 11.96 hrs, Volume= 41,163 cf

Outflow = 4.20 cfs @ 11.96 hrs, Volume= 41,163 cf, Atten= 0%, Lag= 0.0 min

Primary = 4.20 cfs @ 11.96 hrs, Volume= 41,163 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 635.08' @ 11.96 hrs

Flood Elev= 639.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	633.35'	12.0" Round Culvert L= 70.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 633.35' / 628.60' S= 0.0679 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=4.20 cfs @ 11.96 hrs HW=635.08' (Free Discharge) 1=Culvert (Inlet Controls 4.20 cfs @ 5.34 fps)

Pond 61P: DMH 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 62P: DMH 2

[81] Warning: Exceeded Pond 63P by 0.07' @ 11.96 hrs

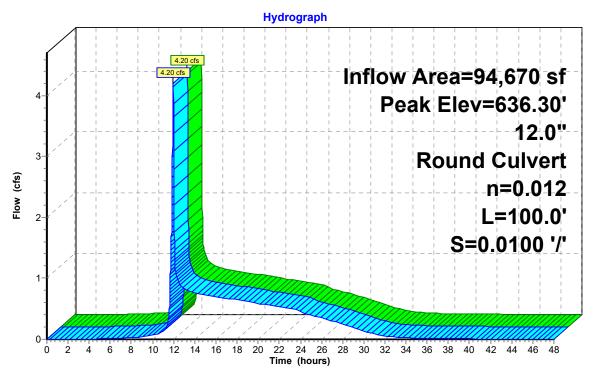
Inflow Area = 94,670 sf, 32.50% Impervious, Inflow Depth > 5.22" for 100-yr event

Inflow = 4.20 cfs @ 11.96 hrs, Volume= 41,163 cf

Outflow = 4.20 cfs @ 11.96 hrs, Volume= 41,163 cf, Atten= 0%, Lag= 0.0 min

Primary = 4.20 cfs @ 11.96 hrs, Volume= 41,163 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 636.30' @ 11.96 hrs

Flood Elev= 640.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	634.45'	12.0" Round Culvert
			L= 100.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 634.45' / 633.45' S= 0.0100 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=4.20 cfs @ 11.96 hrs HW=636.30' (Free Discharge)
1=Culvert (Barrel Controls 4.20 cfs @ 5.34 fps)

Pond 62P: DMH 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 63P: DMH 3

[79] Warning: Submerged Pond 64P Primary device # 1 INLET by 0.03'

Inflow Area = 86,920 sf, 31.67% Impervious, Inflow Depth > 5.15" for 100-yr event

Inflow = 2.34 cfs @ 11.96 hrs, Volume= 37,270 cf

Outflow = 2.34 cfs @ 11.96 hrs, Volume= 37,270 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.34 cfs @ 11.96 hrs, Volume= 37,270 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 636.23' @ 11.96 hrs

Flood Elev= 642.70'

Device Routing Invert Outlet Devices	
#1 Primary 635.35' 12.0" Round Culvert L= 77.0' CPP, square edge headwall, Ke= 0.50 Inlet / Outlet Invert= 635.35' / 634.55' S= 0.010 n= 0.012 Flow Area= 0.79 sf	

Primary OutFlow Max=2.34 cfs @ 11.96 hrs HW=636.23' (Free Discharge) 1=Culvert (Inlet Controls 2.34 cfs @ 3.19 fps)

Pond 63P: DMH 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 64P: DMH 4

[79] Warning: Submerged Pond 65P Primary device # 1 OUTLET by 0.47'

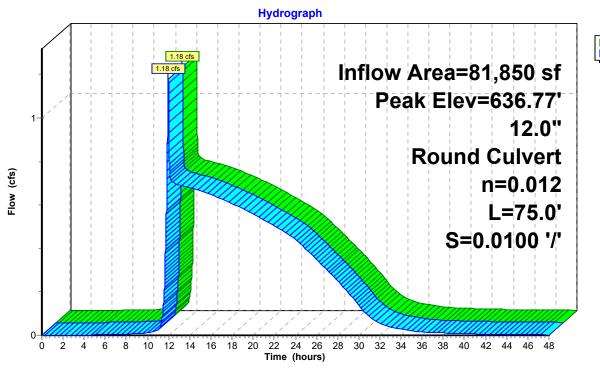
Inflow Area = 81,850 sf, 31.36% Impervious, Inflow Depth > 5.10" for 100-yr event

Inflow = 1.18 cfs @ 11.97 hrs, Volume= 34,797 cf

Outflow = 1.18 cfs @ 11.97 hrs, Volume= 34,797 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.18 cfs @ 11.97 hrs, Volume= 34,797 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 636.77' @ 11.97 hrs

Flood Elev= 647.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	636.20'	12.0" Round Culvert L= 75.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 636.20' / 635.45' S= 0.0100 '/' Cc= 0.900
#1	Primary	636.20'	L= 75.0' CPP, square edge headwall, Ke= 0.500

Primary OutFlow Max=1.17 cfs @ 11.97 hrs HW=636.77' (Free Discharge)
1=Culvert (Inlet Controls 1.17 cfs @ 2.56 fps)

Pond 64P: DMH 4

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 65P: DMH 5

[79] Warning: Submerged Pond 50P Primary device # 1 OUTLET by 0.31'

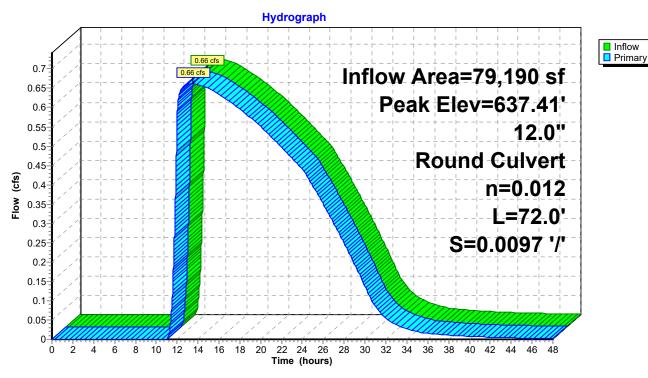
Inflow Area = 79,190 sf, 30.71% Impervious, Inflow Depth > 5.06" for 100-yr event

Inflow = 0.66 cfs @ 13.46 hrs, Volume= 33,408 cf

Outflow = 0.66 cfs @ 13.46 hrs, Volume= 33,408 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.66 cfs @ 13.46 hrs, Volume= 33,408 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 637.41' @ 13.46 hrs

Flood Elev= 651.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	637.00'	12.0" Round Culvert L= 72.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 637.00' / 636.30' S= 0.0097 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.65 cfs @ 13.46 hrs HW=637.41' (Free Discharge) 1=Culvert (Inlet Controls 0.65 cfs @ 2.17 fps)

Pond 65P: DMH 5

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 66P: DMH 6

[79] Warning: Submerged Pond 17P Primary device # 1 INLET by 0.44'

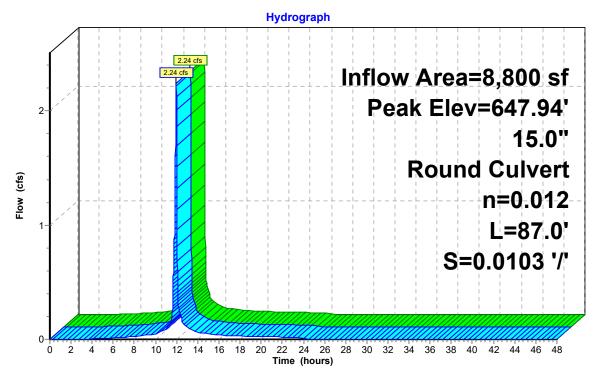
Inflow Area = 8,800 sf, 62.61% Impervious, Inflow Depth = 6.66" for 100-yr event

Inflow = 2.24 cfs @ 11.96 hrs, Volume= 4,883 cf

Outflow = 2.24 cfs @ 11.96 hrs, Volume= 4,883 cf, Atten= 0%, Lag= 0.0 min

Primary = 2.24 cfs @ 11.96 hrs, Volume= 4,883 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 647.94' @ 11.96 hrs

Flood Elev= 651.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	647.20'	15.0" Round Culvert L= 87.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 647.20' / 646.30' S= 0.0103 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=2.23 cfs @ 11.96 hrs HW=647.94' (Free Discharge) 1=Culvert (Inlet Controls 2.23 cfs @ 2.94 fps)

Pond 66P: DMH 6

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 67P: DMH 7

[79] Warning: Submerged Pond 66P Primary device # 1 OUTLET by 0.81'

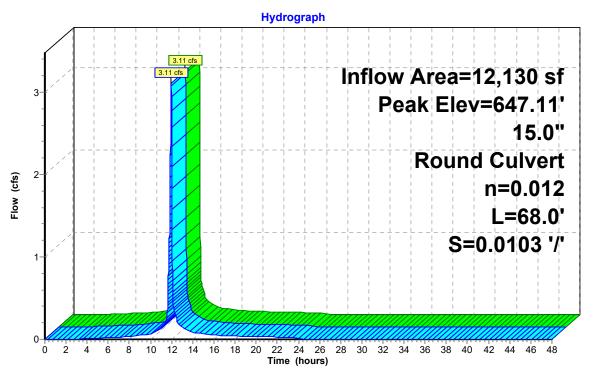
Inflow Area = 12,130 sf, 66.28% Impervious, Inflow Depth = 6.75" for 100-yr event

Inflow = 3.11 cfs @ 11.96 hrs, Volume= 6,818 cf

Outflow = 3.11 cfs @ 11.96 hrs, Volume= 6,818 cf, Atten= 0%, Lag= 0.0 min

Primary = 3.11 cfs @ 11.96 hrs, Volume= 6,818 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 647.11' @ 11.96 hrs

Flood Elev= 654.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	646.20'	15.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 646.20' / 645.50' S= 0.0103 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=3.10 cfs @ 11.96 hrs HW=647.11' (Free Discharge) 1=Culvert (Inlet Controls 3.10 cfs @ 3.24 fps)

Pond 67P: DMH 7

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 68P: DMH 8

[79] Warning: Submerged Pond 67P Primary device # 1 INLET by 0.90'

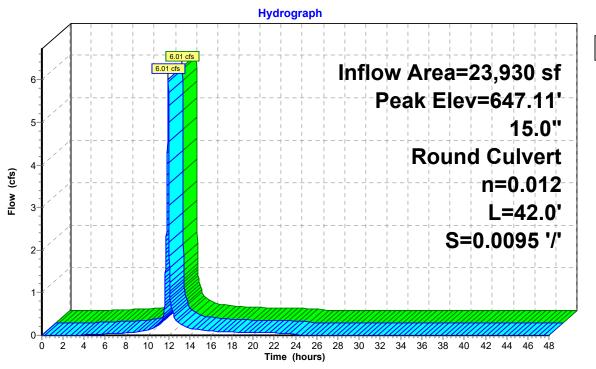
Inflow Area = 23,930 sf, 58.34% Impervious, Inflow Depth = 6.51" for 100-yr event

Inflow = 6.01 cfs @ 11.96 hrs, Volume= 12,978 cf

Outflow = 6.01 cfs @ 11.96 hrs, Volume= 12,978 cf, Atten= 0%, Lag= 0.0 min

Primary = 6.01 cfs @ 11.96 hrs, Volume= 12,978 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 647.11' @ 11.96 hrs

Flood Elev= 654.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	645.40'	15.0" Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 645.40' / 645.00' S= 0.0095 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=5.95 cfs @ 11.96 hrs HW=647.10' (Free Discharge) 1=Culvert (Barrel Controls 5.95 cfs @ 4.85 fps)

Pond 68P: DMH 8

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 69P: DMH 9

[79] Warning: Submerged Pond 68P Primary device # 1 INLET by 0.65'[79] Warning: Submerged Pond 70P Primary device # 1 OUTLET by 1.05'

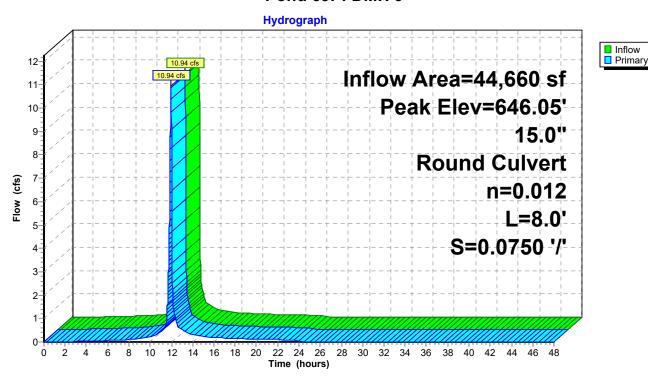
Inflow Area = 44,660 sf, 54.46% Impervious, Inflow Depth = 6.40" for 100-yr event

Inflow = 10.94 cfs @ 11.96 hrs, Volume= 23,826 cf

Outflow = 10.94 cfs @ 11.96 hrs, Volume= 23,826 cf, Atten= 0%, Lag= 0.0 min

Primary = 10.94 cfs @ 11.96 hrs, Volume= 23,826 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 646.05' @ 11.96 hrs

Flood Elev= 654.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	642.00'	15.0" Round Culvert
			L= 8.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 642.00' / 641.40' S= 0.0750 '/' Cc= 0.900
			n= 0.012. Flow Area= 1.23 sf

Primary OutFlow Max=10.91 cfs @ 11.96 hrs HW=646.04' (Free Discharge) 1=Culvert (Inlet Controls 10.91 cfs @ 8.89 fps)

Pond 69P: DMH 9

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 70P: DMH 10

[79] Warning: Submerged Pond 71P Primary device # 1 INLET by 0.25'

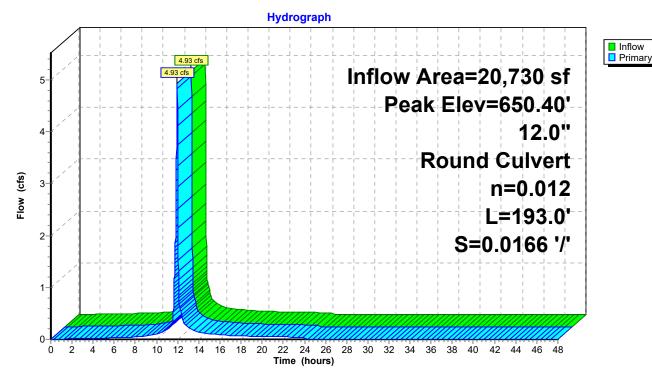
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 6.28" for 100-yr event

Inflow = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf

Outflow = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf, Atten= 0%, Lag= 0.0 min

Primary = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 650.40' @ 11.96 hrs

Flood Elev= 655.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	648.20'	12.0" Round Culvert
			L= 193.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 648.20' / 645.00' S= 0.0166 '/' Cc= 0.900
			n= 0.012 Flow Area= 0.79 sf

Primary OutFlow Max=4.92 cfs @ 11.96 hrs HW=650.39' (Free Discharge) 1=Culvert (Inlet Controls 4.92 cfs @ 6.27 fps)

Pond 70P: DMH 10

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 71P: DMH 11

[79] Warning: Submerged Pond 83P Primary device # 1 INLET by 1.10'

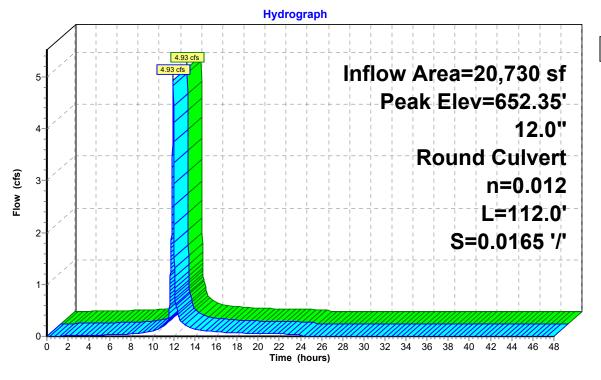
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 6.28" for 100-yr event

Inflow = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf

Outflow = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf, Atten= 0%, Lag= 0.0 min

Primary = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 652.35' @ 11.96 hrs

Flood Elev= 655.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	650.15'	12.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 650.15' / 648.30' S= 0.0165 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=4.92 cfs @ 11.96 hrs HW=652.34' (Free Discharge) 1=Culvert (Inlet Controls 4.92 cfs @ 6.27 fps)

Pond 71P: DMH 11

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 81P: YD 1

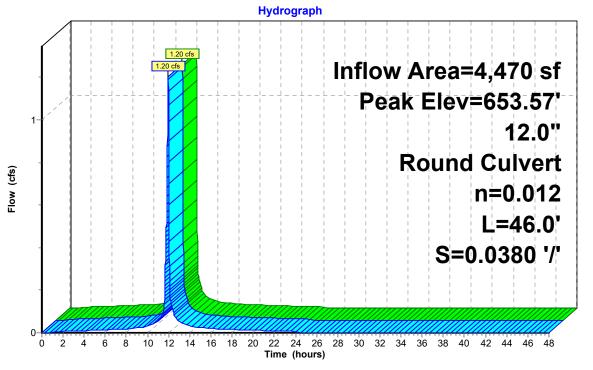
Inflow Area = 4,470 sf,100.00% Impervious, Inflow Depth = 7.69" for 100-yr event

Inflow = 1.20 cfs @ 11.96 hrs, Volume= 2,865 cf

Outflow = 1.20 cfs @ 11.96 hrs, Volume= 2,865 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.20 cfs @ 11.96 hrs, Volume= 2,865 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 653.57' @ 11.96 hrs

Flood Elev= 656.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	653.00'	12.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 653.00' / 651.25' S= 0.0380 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.20 cfs @ 11.96 hrs HW=653.57' (Free Discharge) 1=Culvert (Inlet Controls 1.20 cfs @ 2.57 fps)

Pond 81P: YD 1

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 82P: YD 2

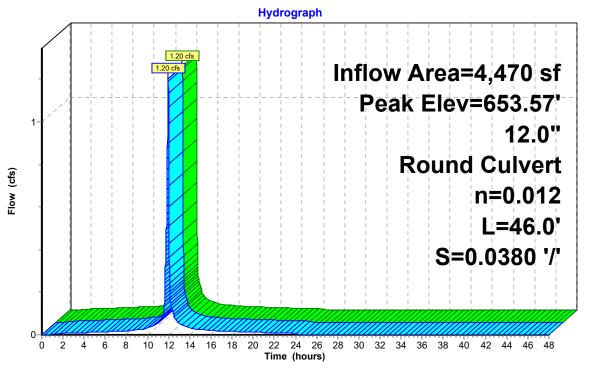
Inflow Area = 4,470 sf,100.00% Impervious, Inflow Depth = 7.69" for 100-yr event

Inflow = 1.20 cfs @ 11.96 hrs, Volume= 2,865 cf

Outflow = 1.20 cfs @ 11.96 hrs, Volume= 2,865 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.20 cfs @ 11.96 hrs, Volume= 2,865 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 653.57' @ 11.96 hrs

Flood Elev= 656.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	653.00'	12.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 653.00' / 651.25' S= 0.0380 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.20 cfs @ 11.96 hrs HW=653.57' (Free Discharge) 1=Culvert (Inlet Controls 1.20 cfs @ 2.57 fps)

Pond 82P: YD 2

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 83P: YD 3

[79] Warning: Submerged Pond 81P Primary device # 1 INLET by 0.45' [79] Warning: Submerged Pond 82P Primary device # 1 INLET by 0.45'

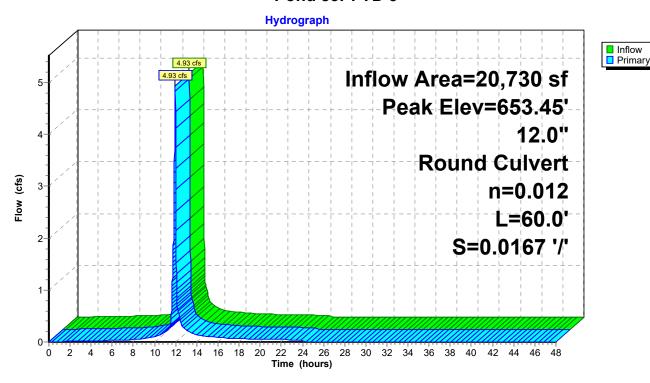
Inflow Area = 20,730 sf, 49.98% Impervious, Inflow Depth = 6.28" for 100-yr event

Inflow = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf

Outflow = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf, Atten= 0%, Lag= 0.0 min

Primary = 4.93 cfs @ 11.96 hrs, Volume= 10,848 cf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Peak Elev= 653.45' @ 11.96 hrs

Flood Elev= 654.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	651.25'	12.0" Round Culvert L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 651.25' / 650.25' S= 0.0167 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=4.92 cfs @ 11.96 hrs HW=653.44' (Free Discharge) 1=Culvert (Inlet Controls 4.92 cfs @ 6.27 fps)

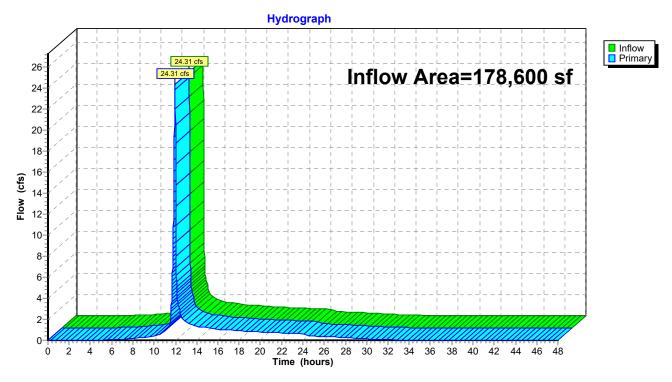
Pond 83P: YD 3

076491 Nichols Townhouses

Prepared by CHA Companies, Inc.

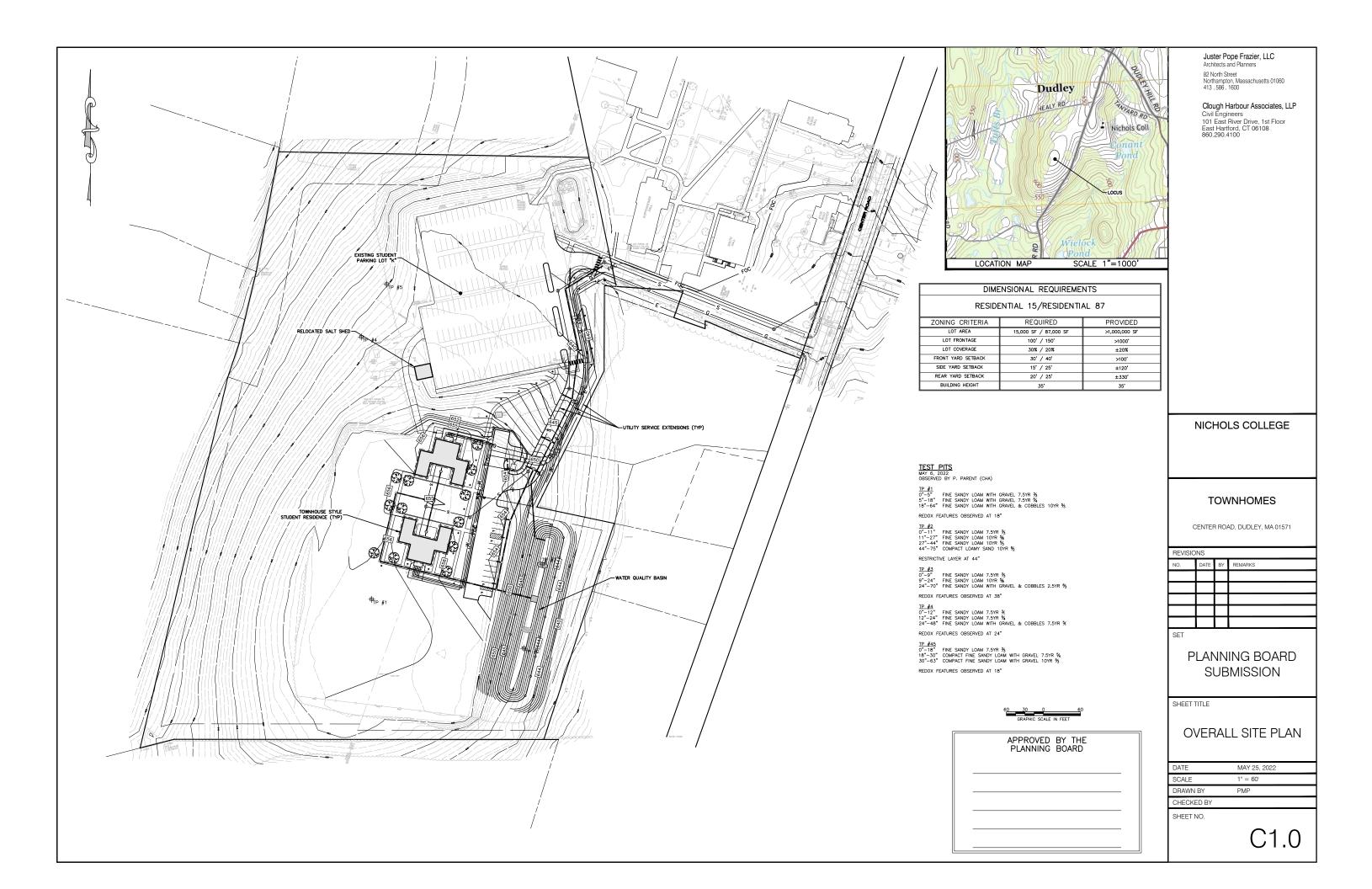
HydroCAD® 10.00-25 s/n 01289 © 2019 HydroCAD Software Solutions LLC

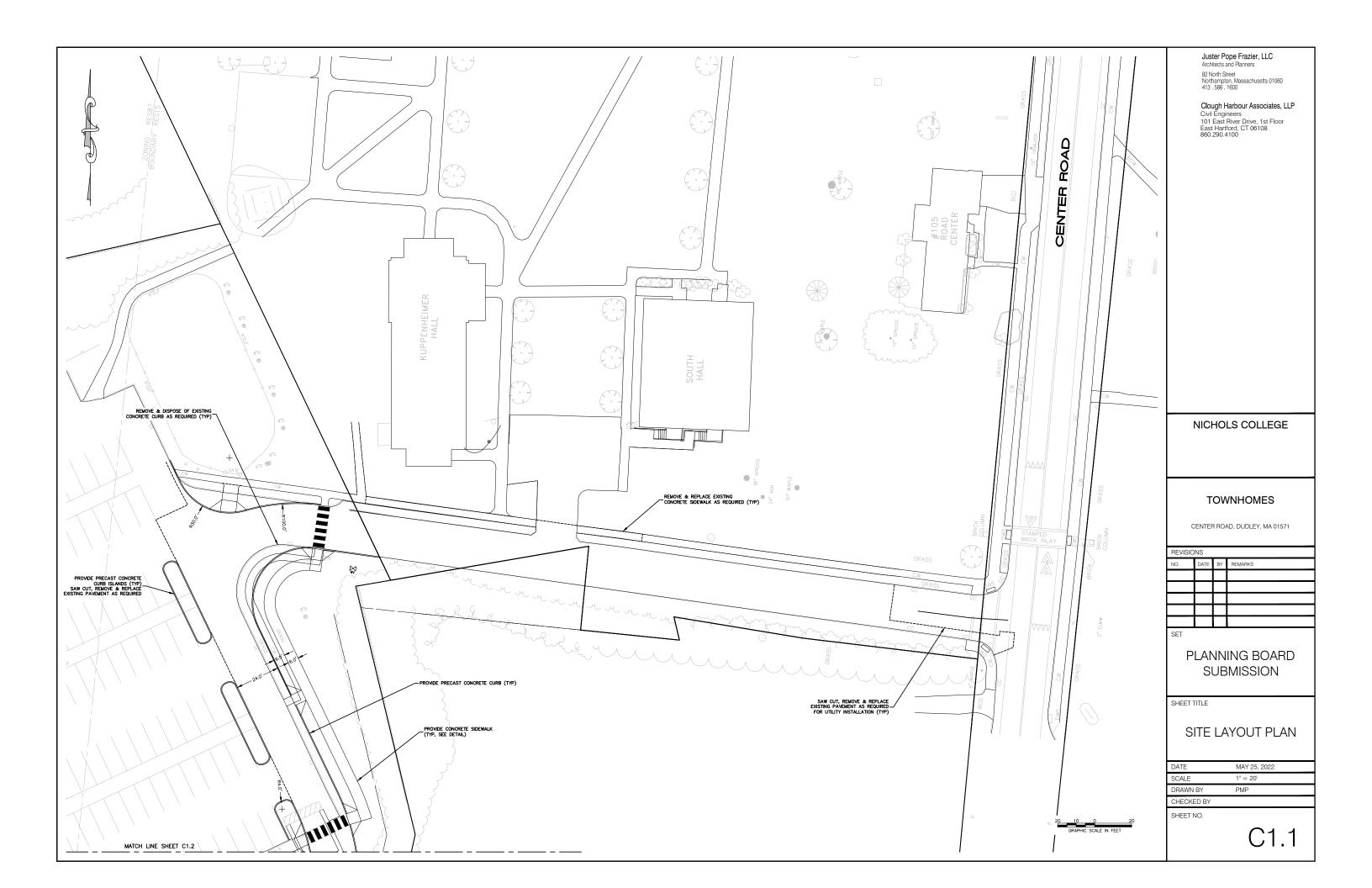
Summary for Link 10L: Center Road

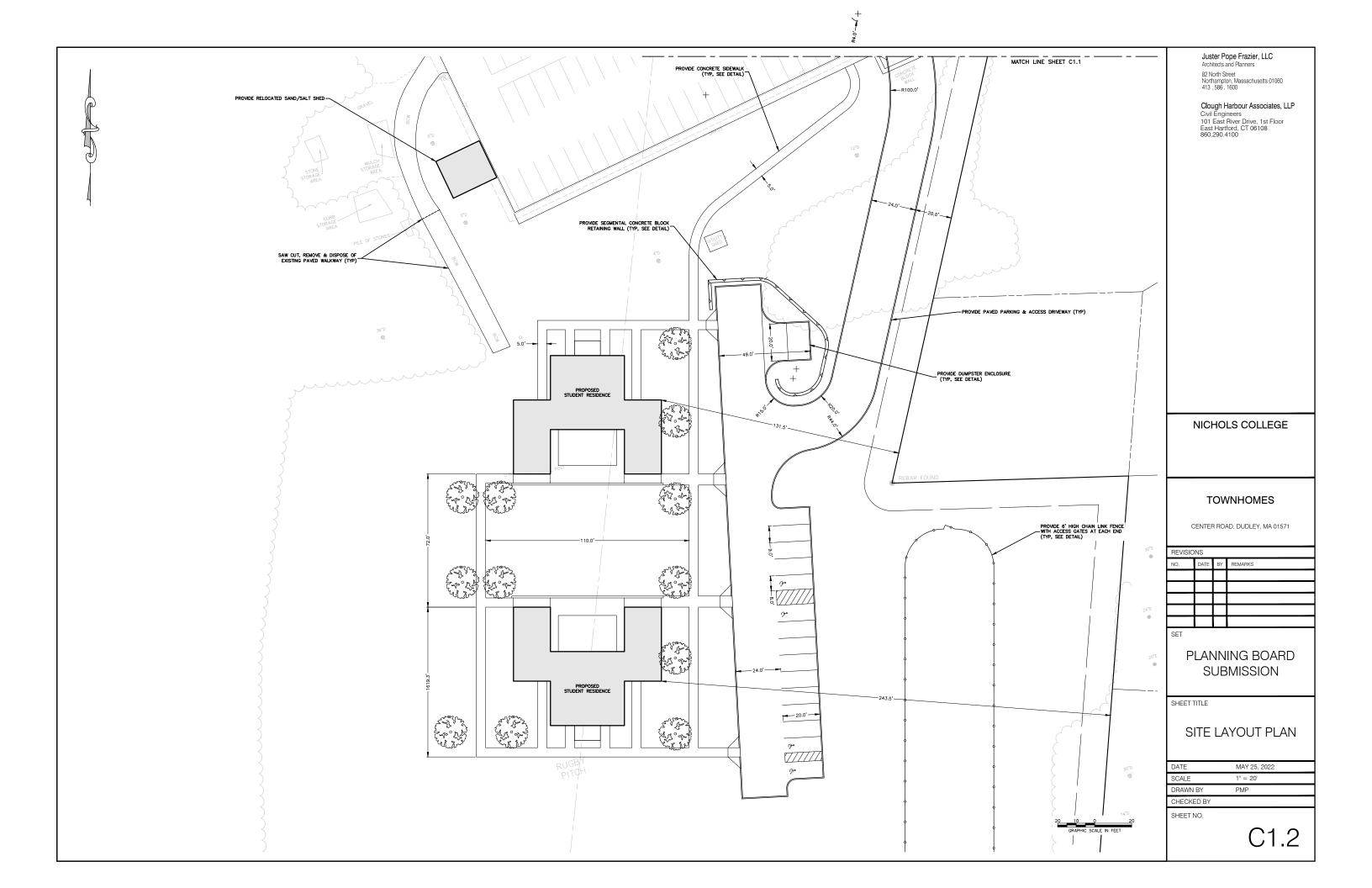

Inflow Area = 178,600 sf, 37.73% Impervious, Inflow Depth = 5.60" for 100-yr event

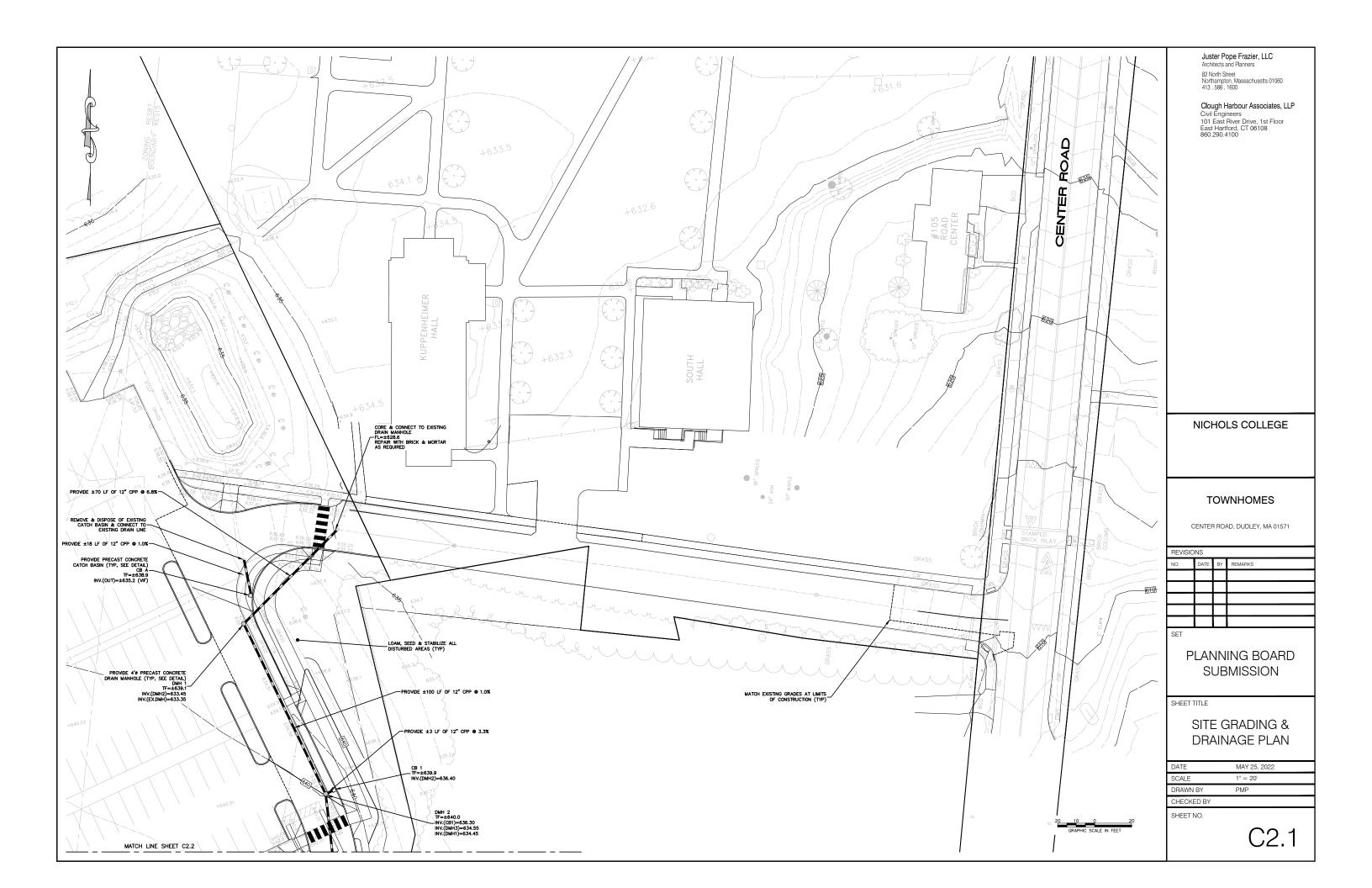
Inflow = 24.31 cfs @ 11.96 hrs, Volume= 83,325 cf

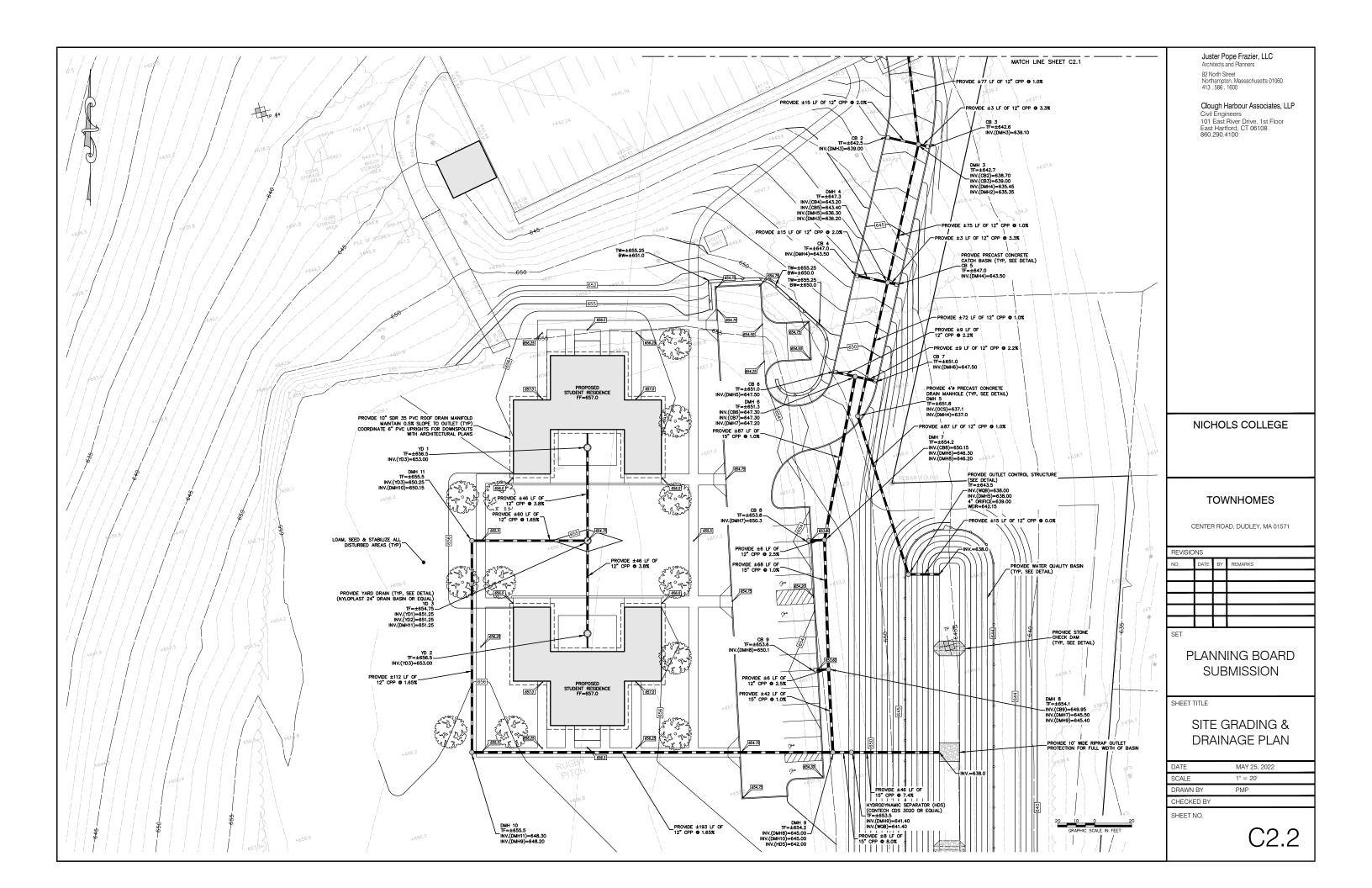
Primary = 24.31 cfs @ 11.96 hrs, Volume= 83,325 cf, Atten= 0%, Lag= 0.0 min

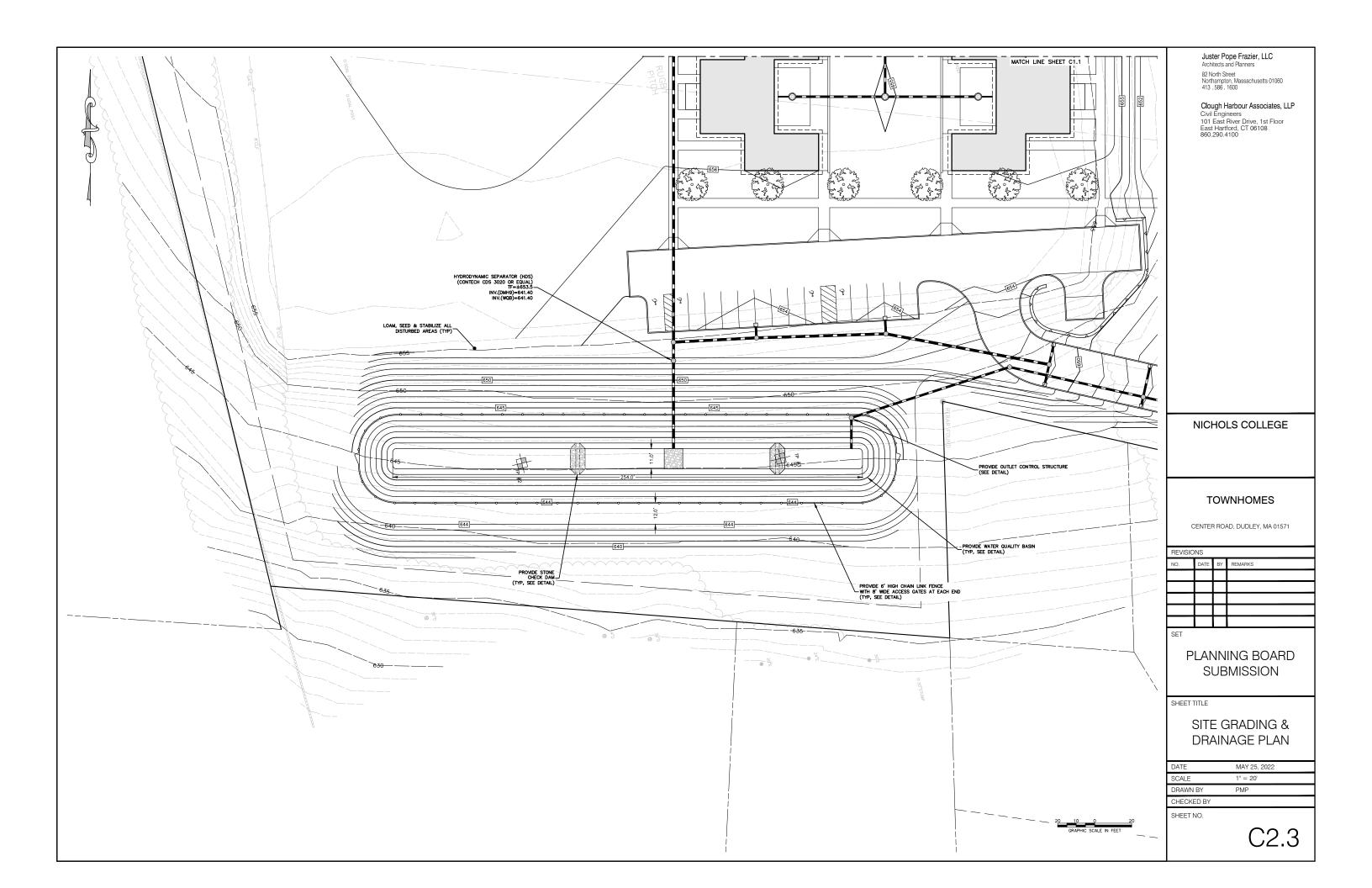

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

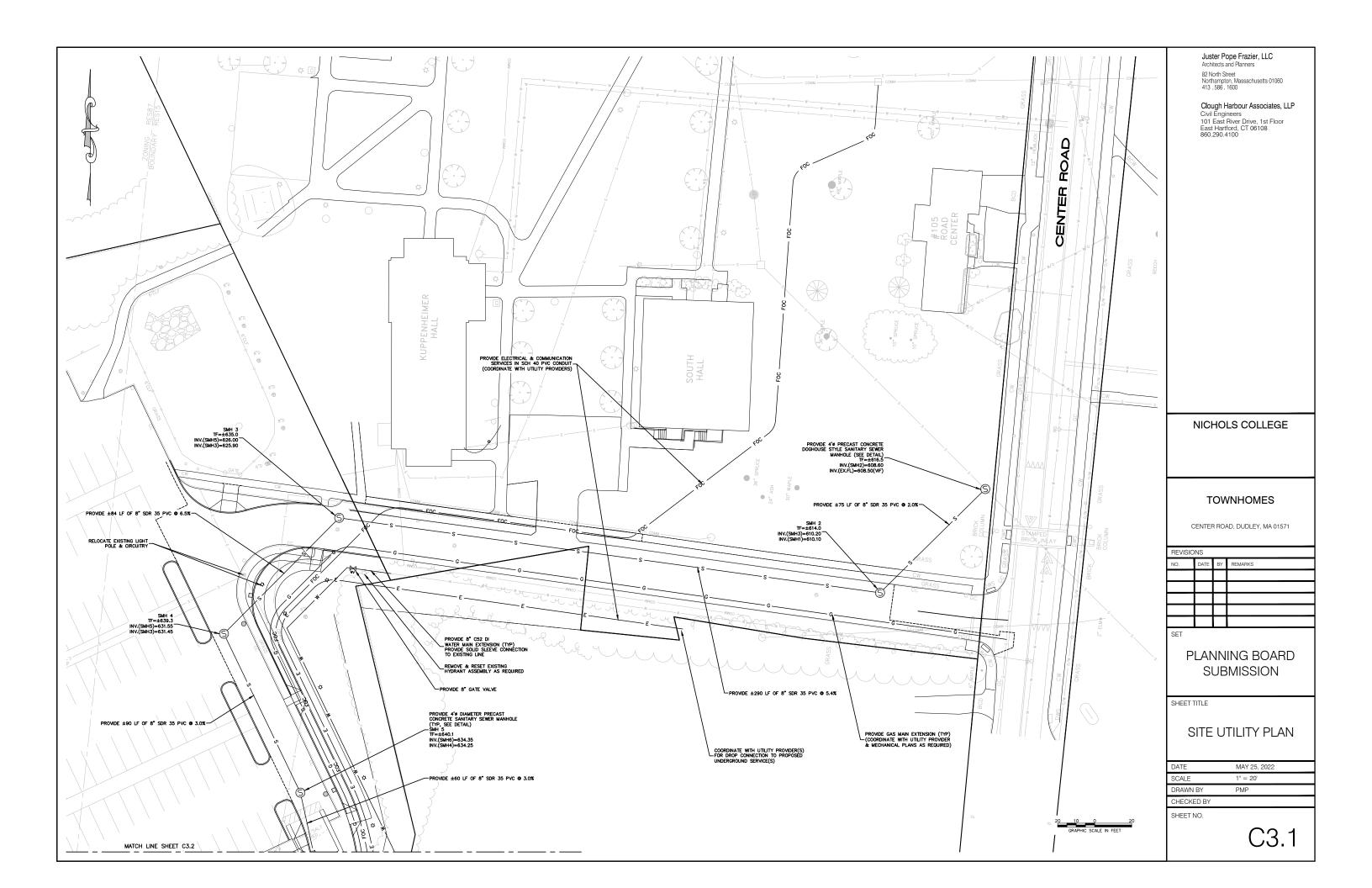

Link 10L: Center Road

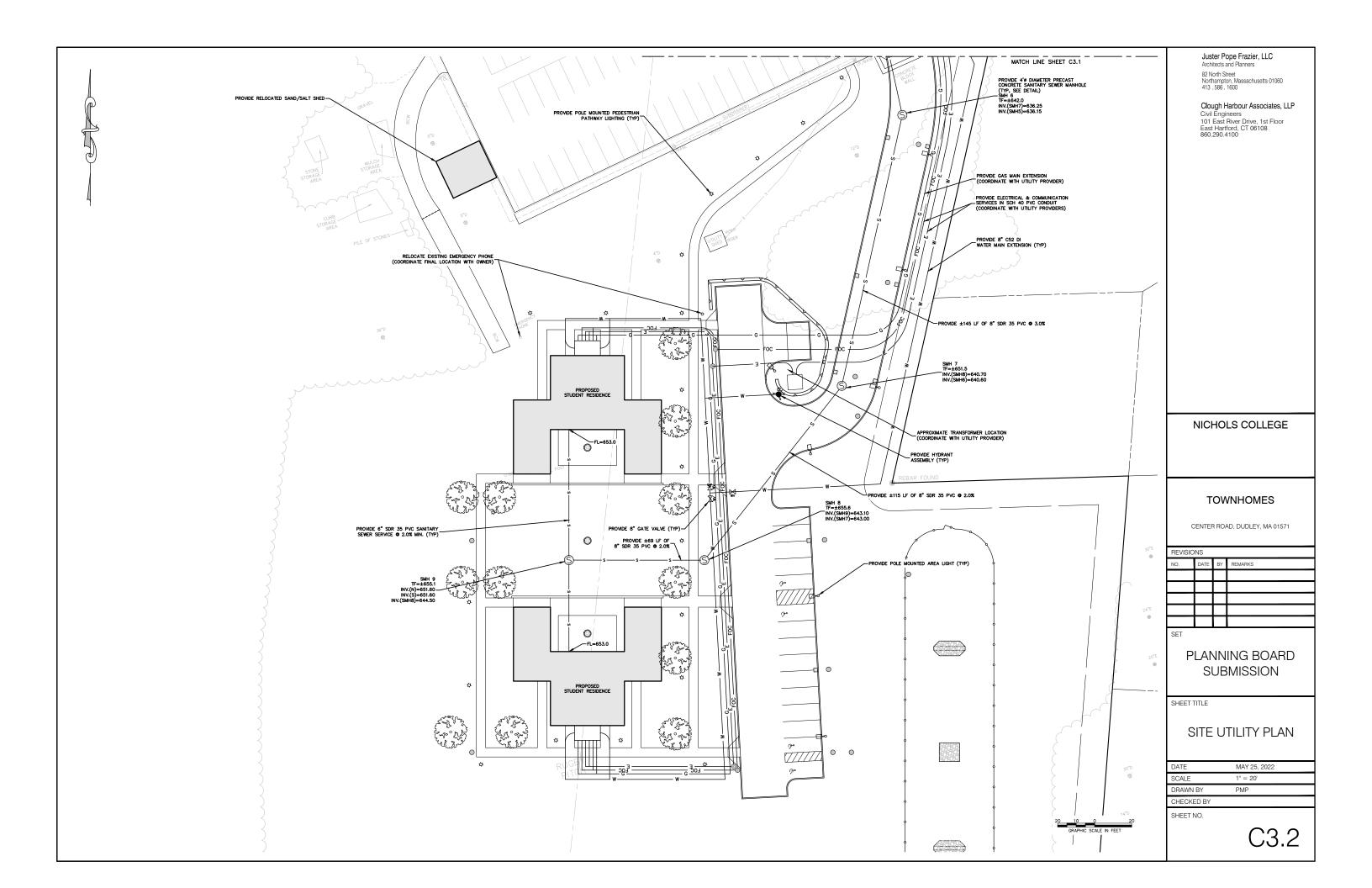


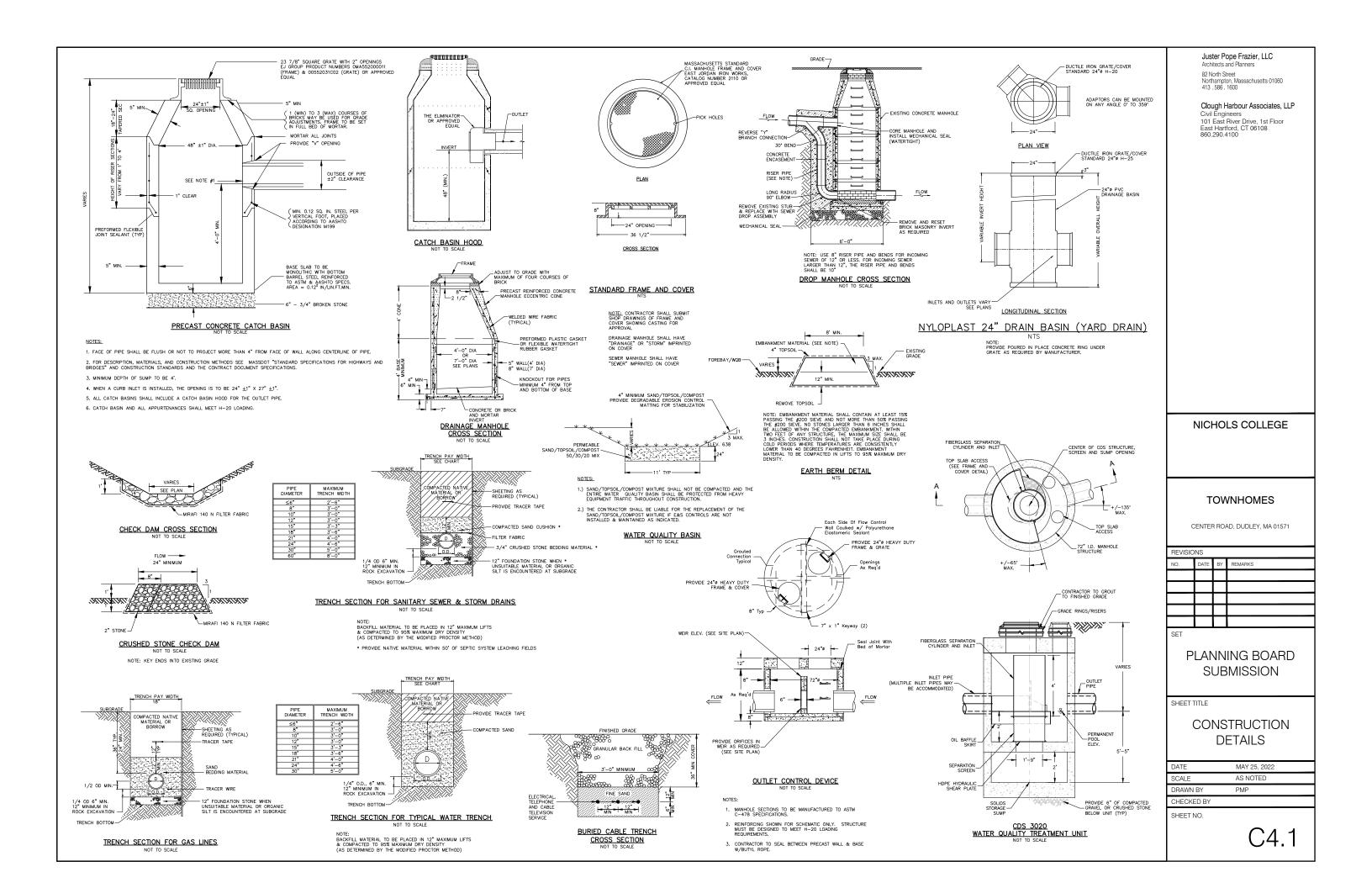


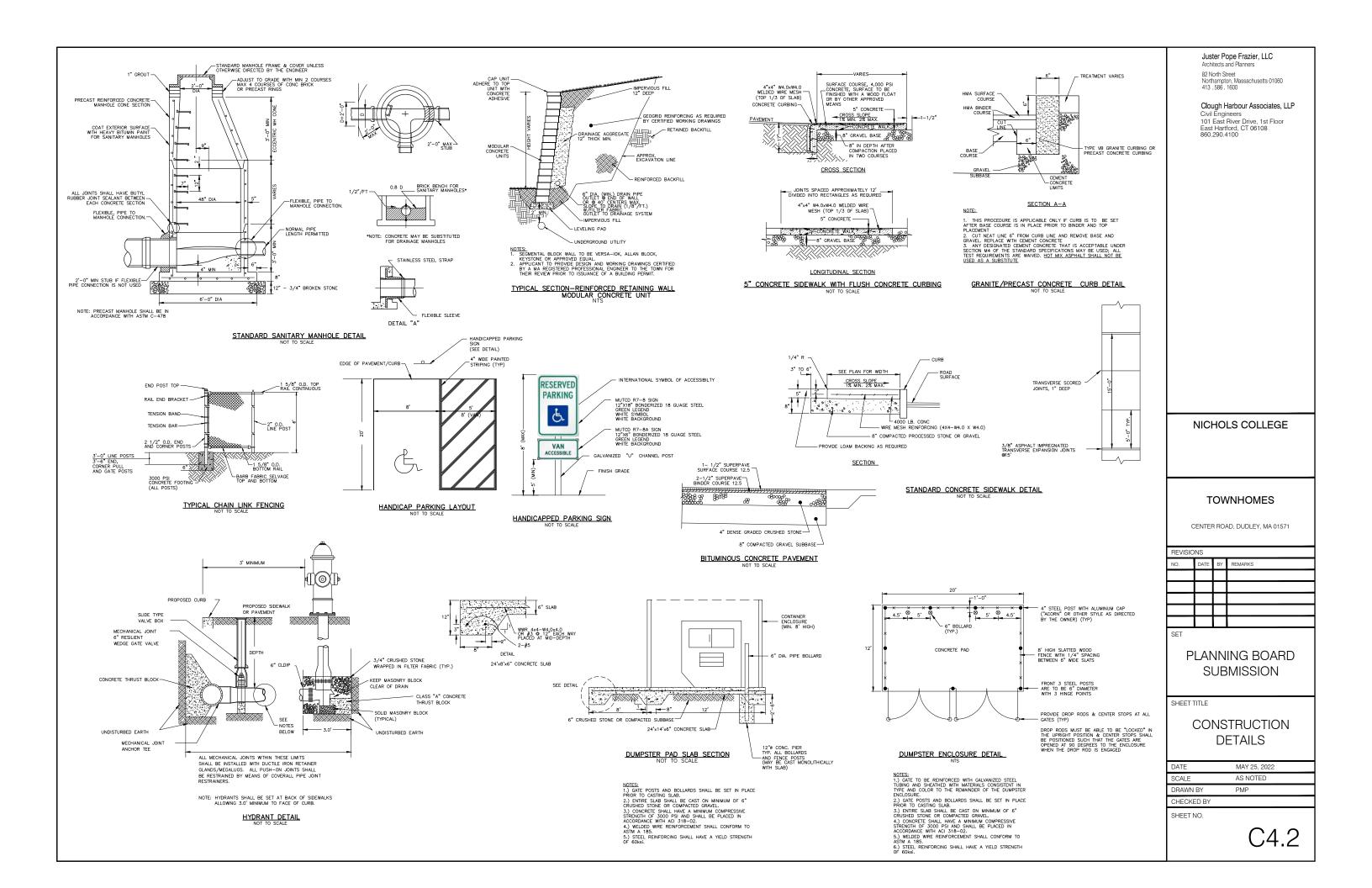

DESIGN PLANS (Includes Construction Period Pollution Prevention Plan, Erosion & Sedimentation Control Plan, and Post Construction Operation & Maintenance Plan)











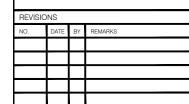
EROSION AND SEDIMENTATION CONTROL DETAILS 2 EACH DUMP STRAPS BAG DETAIL INSTALLATION DETAIL INLET SEDIMENT CONTROL DEVICE 1.5"x1.5"x42" STAKE DRIVEN ON DOWNSLOPE SIDE OF TRENCH EXTEND 8" OF SILT FENCE BELOW GRADE ANGLE STAKE 2* - 20* UPSLOPE SET STAKE 12" MINIMUM INTO GRADE STAKED HAYBALES MAY BE SUBSTITUTED FOR SILT FENCE SILT FENCE AT TOE OF SLOPE APPLICATION CONSTRUCTION ENTRANCE PAD STRAW WATTLE NOTES: 2. ATTACH FILTER FABRIC TO THE POSTS AND EXTEND IT 8" INTO THE TRENCH. TYPICAL WATTLE SPACING BASED ON SLOPE GRADIENT 4. DRIVE POSTS TIGHTLY TOGETHER AND SECURE TOPS OF POSTS BY TYING OF WITH CORD OR WIRE TO PREVENT FLOW-THROUGH OF BUILT-UP SEDIMENT AT JOINT.

PLACEMENT AND CONSTRUCTION OF A SILT FENCE

TYPICAL WATTLE INSTALLATION GUIDE

Juster Pope Frazier, LLC

82 North Street Northampton, Massachusetts 01060 413 . 586 . 1600


Clough Harbour Associates, LLP

Civil Engineers
101 East River Drive, 1st Floor
East Hartford, CT 06108
860.290.4100

NICHOLS COLLEGE

TOWNHOMES

CENTER ROAD, DUDLEY, MA 01571

CET

 BEGIN AT THE LOCATION WHERE THE WATTLE IS TO BE INSTALLED BY EXCAVATING A 2-3" DEEP BY 9" WIDE TRENCH ALONG THE CONTOUN OF THE SLOPE. EXCAVATED SOIL SHOULD BE PLACED UP—SLOPE FROM THE ANCHOR TRENCH.

4. SECURE WATTLES PLACED ON PAVED SURFACES WITH SANDBAGS SPACED AT AN INTERVAL SUFFICIENT TO PREVENT MOVEMENT OF WATTLE AND TO ENSURE THAT ENDS OF ADJACENT WATTLES REMAIN TIGHTLY ABUTTED

-INSTALL WATTLE WITH 24" LONG 1" X 1" WOOD STAKES

ENRICHMENT DETAIL

STRAW WATTLE INSTALLATION

PLANNING BOARD SUBMISSION

SHEET TITLE

EROSION & SEDIMENT CONTROL PLAN

DATE	MAY 25, 2022
SCALE	AS NOTED
DRAWN BY	PMP
CHECKED BY	
SHEET NO.	

C5.1

EROSION AND SEDIMENTATION CONTROL NARRATIVE & NOTES

PROJECT NARRATIVE

THIS PROJECT CONSISTS OF CONSTRUCTING TWO NEW STUDENT HOUSING RESIDENCES ON AT THE SOUTH END OF THE NICHOLS COLLEGE CAMPUS IN DUDLEY, MASSACHUSETS. THE LOCATION OF THE SITE IS ON THE WEST SIDE OF CENTER ROAD APPROXIMATELY 1,500 'SOUTH OF ITS INTERSECTION WITH HEALT ROAD. THIS PROJECT WILL CONSIST OF TWO NEW RESIDENCES, ASSOCIATED PARKING AND ACCESS DRIVEWAYS, CONCRETE SIDEWALKS, RETAINING WALLS, DRAINAGE PIPING AND STRUCTURES, AND UNDERGROUND UTILITIES.

IT IS ANTICIPATED THAT APPROXIMATELY 4 ACRES OF THE 25.6 ACRE SITE WILL BE DISTURBED DURING THE CONSTRUCTION OF THE FACILITY.

THE PROJECT SHALL BE DEVELOPED IN A SINGLE PHASE, HOWEVER, DISTURBED AREAS SHALL BE STABILIZED AT MILESTONE POINTS DURING CONSTRUCTION. ALL WORK SHALL BE SCHEDULED SUCH THAT STABILIZATION CONOIDES WITH THE ABILITY TO VECETATE DISTURBED AREAS, APRIL 1 THROUGH JUNE 15 AND AUGUST 15 THROUGH OCTOBER 1.

ESTIMATED CONSTRUCTION SCHEDULE

- B. ROUGH GRADE SITE SEPTEMBER 2022
- C. INSTALL STORMWATER AND UTILITY SYSTEMS OCTOBER 2022 THRU JUNE 2023
- D. CONSTRUCT BUILDING STRUCTURES SEPTEMBER 2022 THRU JULY 2023
- E. FINISH GRADE SITE AND INSTALL LANDSCAPING JUNE/JULY 2023

GENERAL NOTES

- A. ELEVATIONS ARE BASED ON AN ASSUMED DATUM.
- B. ALL UTILITIES SHALL BE APPROVED BY LOCAL UTILITY COMPANIES PRIOR TO CONSTRUCTION; ALL UTILITIES SHALL BE CONSTRUCTED TO UTILITY COMPANY SPECIFICATIONS.
- D. NO CHANGES CAN BE MADE TO THESE PLANS WITHOUT THE TOWN'S APPROVAL
- E. CONTRACTOR SHALL OBTAIN ALL REQUIRED LOCAL & STATE PERMITS PRIOR TO BEGINNING ANY CONSTRUCTION.
- G. CATCH BASIN TOPS SHALL NOT BE CEMENTED DOWN UNTIL FINAL GRADES ARE SET.
- H. UNLESS OTHERWISE NOTED OR SPECIFIED, ALL ROADWAYS & STORM DRAINAGE SHALL BE CONSTRUCTED IN CONFORMANCE WITH THE COMMONWEALTH OF MASSACHUSETTS, D.O. "STANDARD SPECIFICATIONS FOR HIGHWAYS AND BRIDGES, 2020", SIMILARLY PERTINENT CONSTRUCTION DETAILS THAT ARE NOT INCLUDED WITH THESE DRAWINGS SHALL CONFORM TO THE COMMONWEALTH OF MASSACHUSETTS, D.O.T. STANDARD ROADWAY DRAWINGS.
- I. CONTRACTOR SHALL NOTIFY THE TOWN OF CONSTRUCTION SCHEDULE SO THAT INSPECTION MAY BE PROVIDED.
- J. UNDERGROUND UTILITY, STRUCTURE AND FACILITY LOCATIONS DEPICTED ON PLANS HAVE BEEN COMPILED, IN PART, FROM RECORD MAPPING SUPPUED BY THE RESPECTIVE UTILITY COMPANIES OR GOVERNMENTAL ACENCIES, FROM PAROL TESTIMONY, FIELD MEASUREMENTS AND FROM OTHER SOURCES. THESE LOCATIONS MUST BE CONSIDERED APPOXIMATE IN NATURE. ADDITIONALLY, OTHER SUCH FEATURES MAY EXIST ON THE SITE, THE EXISTENCE OF WHICH ARE UNKNOWN TO CME ASSOCIATES, INC. THE SIZE, LOCATION AND EXISTENCE OF ALL SUCH FEATURES MUST BE FIELD DETERMINED AND VERRIED BY THE APPROPRIATE AUTHORITIES PRIOR TO CONSTRUCTION.

SEEDING SPECIFICATIONS

- A. IF GROUND HAS BEEN PREVIOUSLY MULCHED, MULCH MUST BE REMOVED OR ADDITIONAL NITROGEN MUST BE ADDED.
- REMOVE ALL SURFACE STONES 2" OR LARGER AS WELL AS ALL DEBRIS SUCH AS WRE, CABLE, TREE ROOTS, PIECES OF CONCRETE, CLODS, CLUMPS, OR OTHER UNSUITABLE MATERIAL.
- NO MOWING IS TO BE UNDERTAKEN UNTIL THE MAJORITY OF THE VEGETATION IS AT LEAST 6" HIGH. MOWING SHOULD CUT THE TOP 1/3 OF VEGETATION. DO NOT UNDER ANY CIRCUMSTANCES CUT VEGETATION BELOW 3".
- E. DO NOT APPLY ANY FORM OF WEED CONTROL UNTIL GRASS HAS BEEN MOWED AT LEAST 4 TIMES.
- F. THESE SEEDING MEASURES ARE NOT TO BE USED ON SLOPES IN EXCESS OF 2:1 GRADING.
- PERMANENT SEEDING MEASURES ARE TO BE USED INSTEAD OF TEMPORARY SEEDING MEASURES WHERE WORK IS TO BE SUSPENDED FOR A PERIOD OF TIME LONGER THAN 1 YEAR.
- H. IF THERE IS NO EROSION, BUT SEED SURVIVAL IS LESS THAN 100 PLANTS PER SQUARE FOOT AFTER 4 WEEKS OF GROWTH, RE-SEED AS PLANTING SEASON ALLOWS.

CONSTRUCTION SEQUENCE

- A. STAKEOUT LIMIT OF DISTURBANCE
- B. HOLD A PRECONSTRUCTION MEETING.
- C. CONTACT "DIG SAFE" AT 1-888-344-7233. THREE WORKING DAYS $\,$ PRIOR TO THE START OF ANY CONSTRUCTION ACTIVITY.
- E. INSTALL PERIMETER FILTER (SILT FENCE)
- F. PERFORM ALL NECESSARY CLEARING AND GRUBBING OPERATIONS.
- G. EXCAVATE & DISPOSE OF ALL STUMPS OFF SITE.
- H. STRIP ALL TOPSOIL WITHIN THE FOOTPRINT OF THE CONSTRUCTION SITE. STOCKPILE ALL TOPSOIL IN AN APPROVED AREA AND SECURE WITH EROSION AND SEDIMENT CONTROLS.
- J. DIG FOUNDATIONS AND STOCKPILE MATERIAL AS REQUIRED.
- K. PRIOR TO INSTALLATION OF SURFACE WATER CONTROLS SUCH AS TEMPORARY DIVERSIONS AND STONE DIKES, INSPECT EXISTING CONDITIONS TO ENSURE DISCHARGE LOCATIONS ARE STABLE. IF NOT STABLE, REVIEW DISCHARGE CONDITIONS WITH THE DESIGN ENGINEER AND IMPLEMENT ADDITIONAL STABILIZATION MEASURES PRIOR TO INISTALLING WATER SURFACE CONTROLS.
- M. CONSTRUCT FOUNDATION AND ERECT STRUCTURES.
- N. INSTALL SERVICE UTILITIES.
- P. FINISH GRADE ACCESS DRIVEWAYS & PARKING AREAS.
- Q. PLACE TOPSOIL WHERE REQUIRED. INSTALL PERIMETER LANDSCAPE PLANTINGS.
- R. FINISH GRADE SIDE SLOPES, SEED AND MULCH.
- UPON SUBSTANTIAL COMPLETION OF THE BUILDING, COMPLETE THE BALANCE OF SITE WORK AND STABILIZATION OF ALL OTHER DISTURBED AREAS.
- T. ALL REMAINING EXPOSED AREAS SHALL BE LOAMED, SEEDED AND MULCHED OR SODDED WITHIN 14 DAYS OF FINAL GRADING.
- U. REMOVE TEMPORARY EROSION AND SEDIMENT CONTROLS.
- CONTRACTOR TO REMOVE ANY ACCUMULATED SEDIMENT FROM DRAINAGE STRUCTURES OR BASINS.

NOTE: SEVERAL OF THE ABOVE ACTIVITIES MAY BE DONE SIMULTANEOUSLY

EROSION & SEDIMENT CONTROL OPERATIONS AND MAINTENANCE

- A. EROSION AND SEDIMENTATION CONTROL AND RESTORATION MEASURES SHALL CONFORM TO THE "1997 MASSAGHUSETTS EROSION AND SEDIMENT CONTROL GUDELINES FOR URBAN AND SUBURBAN AREAS", PUBLISHED BY THE MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION, BUREAU OF RESOURCE PROTECTION: AND TO CITY REGULATIONS.
- C. ALL STOCKPILED MATERIAL SHALL BE RINGED WITH WATTLES OR SILT FENCES. ANY MATERIAL TO BE STOCKPILED LONGER THAN 14 DAYS SHALL BE STABILIZED WITH TEMPORARY SEEDING OR JUTE NETTING.
- D. PAVEMENT AND CURBING SHOULD BE INSTALLED AS SOON AS POSSIBLE AFTER STORM DRAINAGE IS INSTALLED.
- E. CATCH BASINS SHALL BE PROTECTED FROM SEDIMENTATION UNTIL ALL AREAS ARE PERMANENTLY VEGETATED OR STABILIZED.
- F. CATCH BASIN SUMPS SHALL BE CLEANED OF SILT PERIODICALLY DURING CONSTRUCTION.
- G. WATTLES OR SILT FENCE SHALL BE PLACED 5-10 FEET FROM THE TOE OF ALL CRITICAL SLOPES AS SHOWN ON THE PLAN. THESE SHALL BE CHECKED BY THE CONTRACTOR REGULARLY AND REPAIRED WHENEVER THEY FAIL TO ENSURE CLEAN RUN-OFF FROM THE SITE.
- ADDITIONAL CONTROL MEASURES IF REQUESTED BY THE TOWN SHALL BE INSTALLED IMMEDIATELY UPON REQUEST.
- ALL DISTURBED AREAS SHALL BE PROTECTED WITH A MINIMUM VEGETATION COVER AS SHOWN IN ACCOMPANYING CHART.
- J. THE CONTRACTOR SHALL PLAN ALL LAND DISTURBING ACTIVITIES IN A MANNER AS TO MINIMIZE THE EXTENT OF THE DISTURBED AREAS.
- K. THE CONTRACTOR SHALL MAKE DAILY INSPECTIONS OF THE SITE TO INSURE EFFECTIVENESS OF EROSION AND SEDIMENTATION CONTROL MEASURES AND WILL IMMEDIATELY MAKE NECESSARY REPAIRS IF REQUIRED BY THE TOWN.
- L. ALL EROSION AND SEDIMENT CONTROL MEASURES ARE TO BE INSPECTED AT A MINIMUM OF ONCE A WEEK AND WITHIN 24 HOURS OF THE END OF A STORM WITH A RAINFALL AMOUNT OF 0.1 INCHES OR GREATER TO DETERMINE MAINTENANCE NEEDS.
- M. ALL EROSION AND SEDIMENT CONTROL MEASURES ARE TO BE REPLACED WITHIN 24 HOURS OF AN OBSERVED FAILURE.
- N. ALL CONSTRUCTION TRAFFIC SHALL ENTER AND LEAVE BY THE DESIGNATED ENTRANCE. ALL SOIL, MISCELLANEOUS DEBMIS, OR OTHER MATERIAL SPILLED, DUMPED OR OTHERWISE DEPOSITED ON PUBLIC STREETS, HIGHWAYS, SIDEWALKS OR OTHER PUBLIC THOROUGHFARES DURING TRANSIT TO OR FROM THE SITE SHALL BE REMOVED PROMPTLY.
- O. THE CONTRACTOR HEREBY ACKNOWLEDGES HIS RESPONSIBILITY TO INSTALL SOIL EROSION AND SEDIMENTATION CONTROL MEASURES ON THIS SITE AND THAT HIS FAILURE TO INSTALL AND MAINTAIN THESE DEVICES COULD RESULT IN FINES OR SUSPENSION OF WORK BY THE TOWN.
- P. MINIMIZE OR ELIMINATE ANY UNNECESSARY LAND DISTURBANCE OR CLEARING

SILT FENCE SPECIFICATIONS

SYNTHETIC FILTER FABRIC SHALL BE A PERVIOUS SHEET OF PROPYLENE, NYLON, POLYESTER, ETHYLENE, OR SIMILAR FILAMENTS AND SHALL BE CERTIFIED BY THE MANUFACTURER OR SUPPLIER AS CONFORMING TO THE FOLLOWING MINIMUM REQUIREMENTS:

1. FILTERING EFFICIENCY 75 PERCENT (MIN) 2. GRAB TENSILE STRENGTH 3. ELONGATION AT FAILURE 15 PERCENT 4. MULLEN BURST STRENGTH 250 POUNDS PER SQUARE INCH 5. PUNCTURE STRENGTH

6. APPARENT OPENING SIZE 0.60mm< X <0.90mm

0.2 GALLONS PER SQUARE FOOT PER MINUTE

0.05 PER SECOND (MIN) 8. PERMITTIVITY

- 9. ULTRAVIOLET RADIATION STABILITY 70 PERCENT AFTER 500 HOURS OF EXPOSURE (MIN)
- TORN OR PUNCTURED GEOTEXTILES SHALL NOT BE USED.
- LINES OF SILT FENCE SHOULD FOLLOW CONTOUR LINES 5-10 FEET DOWN GRADIENT FROM THE SLOPE. WHERE CONTOUR LINES CAN NOT BE FOLLOWED PERPENDICULAR WINGS SHOULD BE PLACED AT 50 FOOT INTERVALS.

CONTROL MEASURES DURING CONSTRUCTION. NAME ADDRESS TELEPHONE #

MAINTENANCE LOG

STORMWATER OPERATION AND MAINTENANCE

STORMWATER FACILITY

OPERATION AND MAINTENANCE PLAN:

CONSTRUCTION PHASE

- PRIOR TO CONSTRUCTION, ALL EROSION/SILTATION CONTROL DEVICES SHOWN ON ABOVE PLAN SHALL BE INSTALLED. TO PREVENT
 SILT INTRUSION INTO THE DRAINAGE SYSTEM DURING CONSTRUCTION, THE CONTRACTOR IS TO INSTALL INLET PROTECTION AT ALL
 CATCH BASINS AND SET SILT FENCE AT ALL SLOPES WHICH MAY ERODE IN THE DIRECTION OF ANY OPEN DRAINAGE FACILITIES.
 SUCH PREVENTIVE MEASURES ARE TO BE MAINTAINED THROUGHOUT THE CONSTRUCTION PROCESS.
- EROSION CONTROLS ARE TO BE INSPECTED ON A DAILY BASIS. UPON DISCOVERY, THE CONTRACTOR SHALL REMOVE ANY SEDIMENT FROM AN EROSION CONTROL STRUCTURE.
- 5. UPON INSTALLATION OF CATCH BASINS, INLET PROTECTION SHALL BE INSTALLED AND MAINTAINED UNTIL READY FOR PAVING.
- 6. PRIOR TO CONSTRUCTION OF IMPERVIOUS AREAS, ALL DRAINAGE STRUCTURES AND PIPES SHALL BE INSTALLED AND INSPECTED FOR PROPER FUNCTION. DURING CONSTRUCTION OF OTHER SITE FEATURES, DRAINAGE FACILITIES SHALL BE INSPECTED ON A DAILY BASIS AND CLEANED/PERPAIRED IMMEDIATELY UPON DISCOVERY OF SEDIMENT BUILD—UP OR DAMAGE.
- 7. AFTER PAVING IS INSTALLED, IT SHALL BE SWEPT CLEAN ON A MONTHLY BASIS.

- 1. CONTRACTOR TO INSPECT WEEKLY OR AFTER EACH 0.5 INCH RAIN EVENT AND CLEAN AS NEEDED.

PRIOR TO TURNOVER TO OWNER THE OIL WATER SEPARATOR WILL BE CLEANED USING A VACUUM TRUCK OR OTHER ORDINARY CATCH BASIN CLEANING EQUIPMENT. THE DEBRIS WILL BE REMOVED FROM THE SITE AND DISPOSED OF ACCORDING TO ALL LOCAL, STATE, AND FEDERAL REGULATIONS. THIS WORK WILL BE DONE BY A LICENSED HAULER OF CONTAMINATED MATERIALS.

- 1. CONTRACTOR TO INSPECT WEEKLY OR AFTER EACH 0.5 INCH RAIN EVENT.
- 2. INSPECTIONS SHOULD FOCUS ON THE DURATION OF STANDING WATER IN THE BASIN. (PONDING AFTER 48 HOURS INDICATES POSSIBLE CLOGGING OF THE BOTTOM OF THE BASIN)
- 3. CONTRACTOR SHALL CLEAN INSPECT DETENTION SYSTEM AFTER SITE IS COMPLETELY STABILIZED AND PRIOR TO TRANSFER TO OWNER.

POST-DEVELOPMENT PHASE

SNOW ACCUMULATIONS REMOVED FROM DRIVEWAYS AND PARKING AREAS SHALL BE PLACED IN UPLAND AREAS, WHERE SAND AND DEBRIS WILL REMAIN AFTER SNOW MELT FOR LATER REMOVAL. CARE SHOULD BE TAKEN NOT TO DEPOSIT SNOW IN THE IMMEDIATE VICINITY OF CATCH BASINS, DRAINAGE SWALES, OR SLOPES LEADING TO BODIES OF WATER, AND DRINKING WATER WELL SUPPLIES.

DRIVEWAYS AND PARKING AREAS SHOULD BE SWEPT CLEAN AT LEAST TWICE ANNUALLY, WITH ONE SWEEPING PREFERABLY OCCURRING IMMEDIATELY AFTER WINTER SNOW MELT AND BEFORE SPRING RAINS. SWEEPING DURING THIS PERIOD CAPTURES PEAK SEDIMENT LOADS AND EXTENDS THE SERVICE LIFE OF THE STORM WATER MANAGEMENT SYSTEM.

CATCH BASINS SHALL BE INSPECTED BI-ANNUALLY AND CLEANED AT LEAST ANNUALLY, AFTER THE SNOW AND ICE SEASON, AND AS SOON AS POSSIBILE BEFORE SPRING RAINS. IN GENERAL, A CATCH BASIN SHOULD BE CLEANED IF THE DEPTH OF DEPOSITS IS GREATER THAN ONE HALF THE SUMP DEPTH. IF A CATCH BASIN SIGNIFICANTLY EXCEEDED THIS STANDARD THEN MORE FREQUENT CLEANINGS SHALL BE SCHEDULED. IN AREAS WITH HIGHER POLLUTANT LOADINGS OR DISCHARGES INTO SENSITIVE BODIES OF WATER, MORE FREQUENT CLEANINGS WILL BE NECESSARY.

HYDRODYNAMIC OIL & PARTICLE SEPARATOR: THE OIL WATER SEPARATOR WILL BE INSPECTED QUARTERLY FOR THE PRESENCE OF ACCUMULATED OIL AND GREASE, FLOATABLES AND SEDIMENT, IF FOUND, THE STRUCTURE WILL BE CLEANED USING A VACUUM TRUCK OR OTHER ORDINARY CATCH BASIN CLEANING COUPMENT. THE DEBRIS WILL BE REMOVED FROM THE SITE AND DISPOSED OF ACCORDING TO ALL LOCAL, STATE, AND FEDERAL REGULATIONS. THIS WORK WILL BE DONE BY A LICENSED HALDER OF CONTAMINATED MATERIALS. THE SCHEDULE OF INSPECTIONS WILL BE ADJUSTED TO AN ANNUAL INSPECTION IF NO OIL OR GREASE IS FOUND ON A REGULAR BASIS. OWNER WILL BE RESPONSIBLE FOR THE INSPECTIONS AND CLEANING.

WATER QUALITY BASIN

WATER QUALITY BASIN SHALL BE INSPECTED AT LEAST TWICE ANNUALLY AND AFTER ALL MAJOR STORMS TO ENSURE THAT IT IS
OPERATING AS INTENDED. PRETREATMENT BMP'S SHALL BE INSPECTED AND CLEANED DURING THE REGULAR BI-ANNUAL INSPECTIONS.
POTENTIAL PROBLEMS THAT SHOULD BE CHECKED INCLUDE:
PONDING
PROSIDE
PROSIDE
PROSIDE
REGISTOR
ANY NECESSARY REPARS SHALL BE MADE IMMEDIATELY. TRASH SHALL BE REMOVED AND THE BANKS, OF BASINS, MOWED AT LEAST
TWICE PER YEAR. (MOWING SHOULD BE PERFORMED WHEN GROUND IS DRY TO AVOID RUTS AND COMPACTION) SEDIMENT SHALL BE
REMOVED FROM THE BASIN AND PRETREATMENT AREA AS NECESSARY, AND AT LEAST ONCE EVERY FIVE YEARS.

RECORDS SHALL BE MAINTAINED BY THE OWNER AT THEIR OFFICES & SHALL DOCUMENT ALL ROUTINE & EMERGENCY MAINTENANCE WORK PERFORMED TO THE STORMWATER MANAGEMENT SYSTEM & SHALL BEAR THE SIGNATURE OF THE INDIVIDUAL SUPERVISING THE WORK. THESE RECORDS & THE SITE, SHALL BE MADE AVAILABLE TO THE TOWN FOR INSPECTION UPON REQUEST IN ORDER TO ENSURE COMPLIANCE WITH THIS PLAN.

SUGGESTED SEEDING MIXTURES AND PRACTICES

_	AREAS WHERE SEED MIX APPLIES	SEEDING MIXTURES BY WEIG	ЭНТ	RATE PER 1,000 SQ. FT.	SEEDING DATES
	ALL LAWN AREAS	RED FESCUES KENTUCKY BLUEGRASS PERENNIAL RYEGRASS	45% 45% 10%	1 LBS.	APRIL 1 - JUNE 15 OR AUG. 15 - OCT. 1
	ROAD CUTS, FILLS, DIVERSION DITCHES, & STORMWATER BASINS	KENTUCKY TALL FESCUE REDTOP CREEPING RED FESCUE	47% 6% 47%	0.95 LBS.	APRIL 1 — JUNE 15 OR AUG. 15 — OCT. 1

WHERE TREES ARE TO BE RETAINED, THE SEED MIXTURE SHOULD BE ADAPTED FOR SHADY CONDITIONS

TEMPORARY SEEDING 1-1/2 LBS. SUSPENSION OF GRADING WORK

Clough Harbour Associates, LLP

Civil Engineers 101 East River Drive, 1st Floor East Hartford, CT 06108

Juster Pope Frazier, LLC Architects and Planners

Northampton, Massachusetts 01060 413 .586 .1600

82 North Street

NICHOLS COLLEGE

TOWNHOMES

CENTER ROAD, DUDLEY, MA 01571

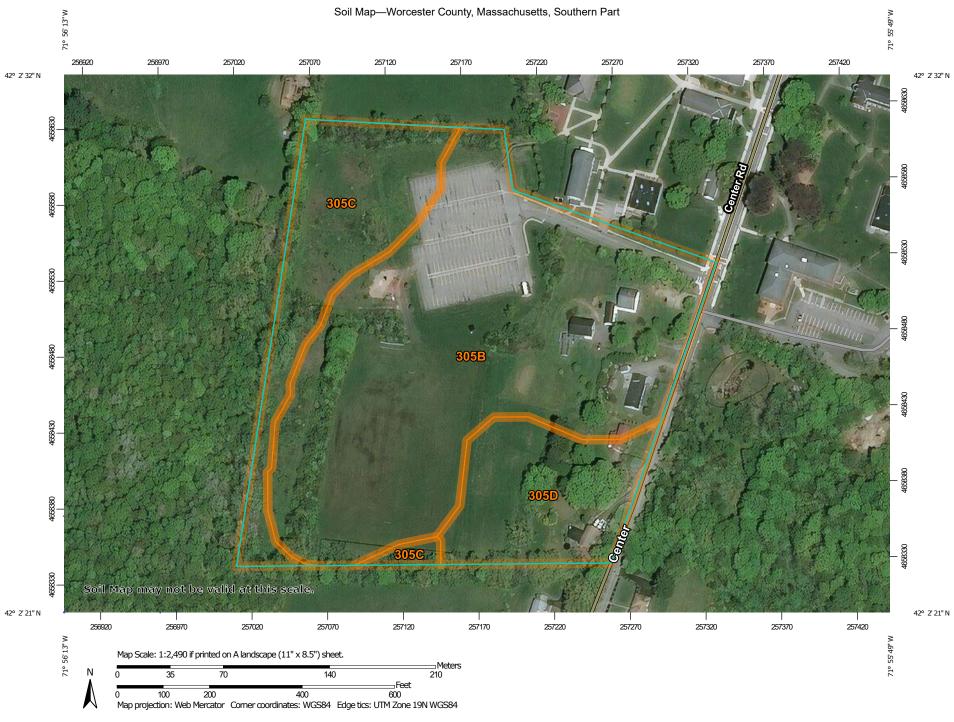
REVISIO	NS		
NO.	DATE	BY	REMARKS

SFT

PLANNING BOARD **SUBMISSION**

SHEET TITLE

SHEET NO.


EROSION & SEDIMENT CONTROL PLAN

DATE	MAY 25, 2022	
SCALE	AS NOTED	
DRAWN BY	PMP	
CHECKED BY		

C5.1

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Candfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot
Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

CLIND

Stony Spot

Very Stony Spot

Spoil Area

Wet Spot

△ Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

~

US Routes
Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:25.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Worcester County, Massachusetts, Southern

Part

Survey Area Data: Version 14, Sep 3, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 18, 2019—Jul 9, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
305B	Paxton fine sandy loam, 3 to 8 percent slopes	11.3	65.6%
305C	Paxton fine sandy loam, 8 to 15 percent slopes	3.3	19.3%
305D	Paxton fine sandy loam, 15 to 25 percent slopes	2.6	15.1%
Totals for Area of Interest		17.2	100.0%

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:25.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Worcester County, Massachusetts, Southern Survey Area Data: Version 14, Sep 3, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Not rated or not available Date(s) aerial images were photographed: May 18, 2019—Jul 9. **Soil Rating Points** 2019 The orthophoto or other base map on which the soil lines were A/D compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
305B	Paxton fine sandy loam, 3 to 8 percent slopes	С	11.3	65.6%
305C	Paxton fine sandy loam, 8 to 15 percent slopes	С	3.3	19.3%
305D	Paxton fine sandy loam, 15 to 25 percent slopes	С	2.6	15.1%
Totals for Area of Interest			17.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOAA Atlas 14, Volume 10, Version 3 Location name: Dudley, Massachusetts, USA* Latitude: 42.0417°, Longitude: -71.9342° Elevation: 640.33 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

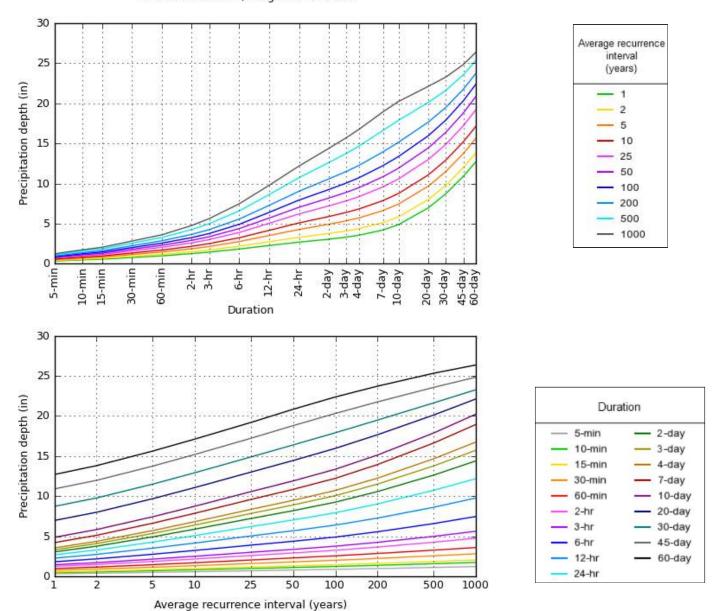
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-	S-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration	Average recurrence interval (years)									
Daration	1	2	5	10	25	50	100	200	500	1000
5-min	0.333 (0.262-0.419)	0.395 (0.310-0.497)	0.496 (0.388-0.626)	0.580 (0.451-0.736)	0.695 (0.522-0.924)	0.782 (0.575-1.06)	0.872 (0.621-1.23)	0.971 (0.657-1.41)	1.11 (0.721-1.68)	1.23 (0.775-1.89)
10-min	0.472 (0.371-0.593)	0.560 (0.440-0.703)	0.703 (0.550-0.886)	0.821 (0.639-1.04)	0.984 (0.740-1.31)	1.11 (0.814-1.51)	1.24 (0.880-1.75)	1.38 (0.930-2.00)	1.58 (1.02-2.38)	1.74 (1.10-2.68)
15-min	0.556 (0.437-0.698)	0.658 (0.517-0.828)	0.826 (0.646-1.04)	0.966 (0.751-1.23)	1.16 (0.870-1.54)	1.30 (0.958-1.77)	1.45 (1.03-2.06)	1.62 (1.09-2.36)	1.85 (1.20-2.80)	2.04 (1.29-3.16)
30-min	0.766 (0.603-0.962)	0.908 (0.713-1.14)	1.14 (0.892-1.44)	1.33 (1.04-1.69)	1.60 (1.20-2.13)	1.80 (1.32-2.45)	2.01 (1.43-2.84)	2.24 (1.51-3.25)	2.56 (1.66-3.87)	2.82 (1.78-4.36)
60-min	0.977 (0.768-1.23)	1.16 (0.910-1.46)	1.45 (1.14-1.83)	1.70 (1.32-2.16)	2.04 (1.53-2.71)	2.30 (1.69-3.12)	2.56 (1.82-3.62)	2.85 (1.93-4.15)	3.27 (2.12-4.94)	3.60 (2.28-5.56)
2-hr	1.26 (0.995-1.57)	1.49 (1.18-1.85)	1.86 (1.47-2.33)	2.17 (1.70-2.73)	2.59 (1.97-3.44)	2.91 (2.16-3.96)	3.25 (2.35-4.61)	3.65 (2.48-5.28)	4.25 (2.77-6.39)	4.76 (3.02-7.32)
3-hr	1.45 (1.15-1.80)	1.71 (1.36-2.13)	2.15 (1.70-2.68)	2.50 (1.97-3.15)	3.00 (2.29-3.97)	3.37 (2.52-4.57)	3.76 (2.74-5.34)	4.25 (2.88-6.12)	4.99 (3.25-7.47)	5.62 (3.58-8.60)
6-hr	1.83 (1.46-2.25)	2.18 (1.74-2.69)	2.75 (2.20-3.41)	3.23 (2.56-4.03)	3.89 (2.99-5.12)	4.37 (3.29-5.91)	4.90 (3.59-6.94)	5.56 (3.79-7.96)	6.58 (4.30-9.79)	7.46 (4.76-11.3)
12-hr	2.26 (1.83-2.77)	2.74 (2.21-3.36)	3.51 (2.82-4.32)	4.15 (3.32-5.15)	5.04 (3.89-6.58)	5.69 (4.30-7.63)	6.40 (4.71-8.98)	7.27 (4.98-10.3)	8.61 (5.65-12.7)	9.77 (6.25-14.7)
24-hr	2.68 (2.18-3.27)	3.29 (2.67-4.00)	4.27 (3.45-5.22)	5.08 (4.09-6.25)	6.20 (4.82-8.05)	7.03 (5.35-9.37)	7.93 (5.87-11.1)	9.03 (6.21-12.8)	10.7 (7.06-15.7)	12.2 (7.82-18.2)
2-day	3.05 (2.50-3.68)	3.76 (3.08-4.55)	4.92 (4.01-5.97)	5.89 (4.77-7.19)	7.21 (5.65-9.31)	8.19 (6.28-10.8)	9.26 (6.89-12.8)	10.6 (7.30-14.8)	12.6 (8.34-18.4)	14.4 (9.27-21.4)
3-day	3.31 (2.73-3.98)	4.09 (3.36-4.92)	5.35 (4.38-6.47)	6.40 (5.21-7.78)	7.84 (6.16-10.1)	8.90 (6.85-11.8)	10.1 (7.53-13.9)	11.5 (7.97-16.1)	13.8 (9.11-20.0)	15.7 (10.1-23.3)
4-day	3.55 (2.93-4.25)	4.37 (3.60-5.24)	5.71 (4.69-6.88)	6.82 (5.57-8.27)	8.35 (6.59-10.7)	9.48 (7.31-12.5)	10.7 (8.03-14.8)	12.3 (8.49-17.1)	14.7 (9.72-21.2)	16.7 (10.8-24.7)
7-day	4.20 (3.49-5.01)	5.12 (4.25-6.11)	6.62 (5.48-7.94)	7.87 (6.46-9.49)	9.58 (7.60-12.2)	10.8 (8.41-14.2)	12.2 (9.20-16.8)	13.9 (9.70-19.3)	16.6 (11.1-23.9)	18.9 (12.3-27.8)
10-day	4.87 (4.06-5.78)	5.84 (4.87-6.94)	7.43 (6.17-8.87)	8.74 (7.21-10.5)	10.6 (8.39-13.4)	11.9 (9.24-15.5)	13.4 (10.0-18.2)	15.1 (10.6-20.9)	17.9 (11.9-25.6)	20.2 (13.1-29.6)
20-day	6.97 (5.86-8.22)	8.00 (6.72-9.44)	9.68 (8.10-11.5)	11.1 (9.20-13.2)	13.0 (10.4-16.2)	14.4 (11.2-18.5)	16.0 (11.9-21.2)	17.7 (12.4-24.1)	20.1 (13.5-28.5)	22.1 (14.4-32.1)
30-day	8.73 (7.38-10.3)	9.78 (8.26-11.5)	11.5 (9.66-13.6)	12.9 (10.8-15.4)	14.9 (11.9-18.4)	16.4 (12.8-20.7)	17.9 (13.4-23.5)	19.5 (13.8-26.5)	21.6 (14.5-30.5)	23.3 (15.2-33.6)
45-day	10.9 (9.26-12.8)	12.0 (10.2-14.0)	13.7 (11.6-16.2)	15.2 (12.7-18.0)	17.2 (13.8-21.1)	18.8 (14.6-23.5)	20.3 (15.1-26.3)	21.8 (15.4-29.4)	23.6 (15.9-33.1)	24.8 (16.2-35.8)
60-day	12.7 (10.8-14.8)	13.8 (11.8-16.1)	15.6 (13.2-18.3)	17.1 (14.4-20.2)	19.2 (15.4-23.4)	20.8 (16.3-25.9)	22.4 (16.6-28.7)	23.7 (16.9-31.9)	25.3 (17.1-35.4)	26.4 (17.2-37.8)

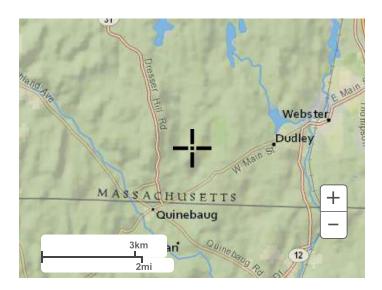

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

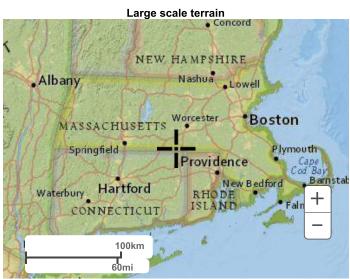
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

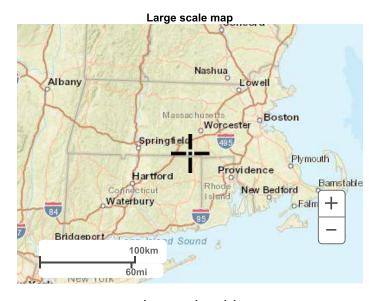
Please refer to NOAA Atlas 14 document for more information.

Back to Top

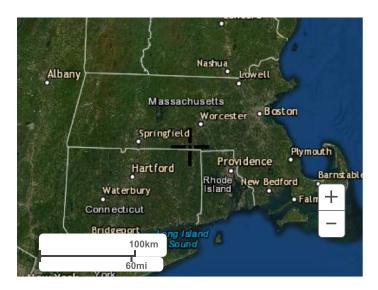
PDS-based depth-duration-frequency (DDF) curves Latitude: 42.0417°, Longitude: -71.9342°


NOAA Atlas 14, Volume 10, Version 3


Created (GMT): Sun May 22 19:54:59 2022


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

NOAA Atlas 14, Volume 10, Version 3 Location name: Dudley, Massachusetts, USA* Latitude: 42.0417°, Longitude: -71.9342° Elevation: 640.33 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

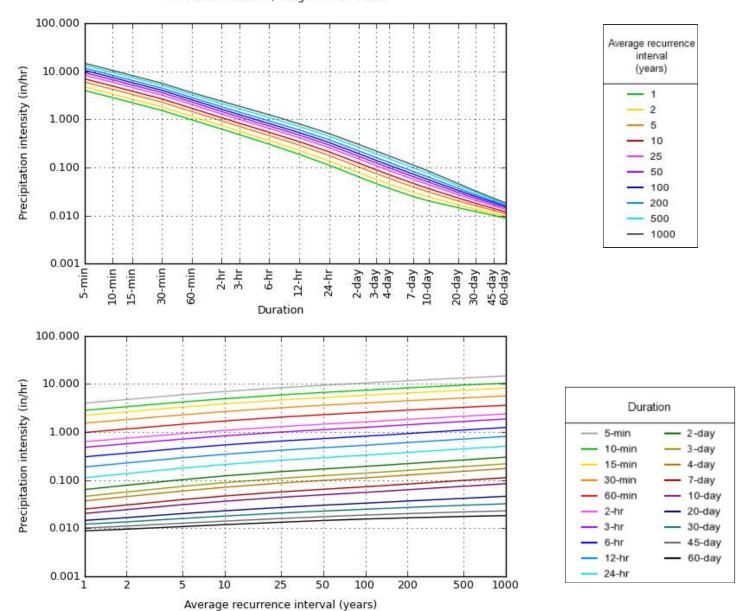
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

	based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹ Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.00 (3.14-5.03)	4.74 (3.72-5.96)	5.95 (4.66-7.51)	6.96 (5.41-8.83)	8.34 (6.26-11.1)	9.38 (6.90-12.8)	10.5 (7.45-14.8)	11.7 (7.88-17.0)	13.3 (8.65-20.2)	14.7 (9.30-22.7)
10-min	2.83 (2.23-3.56)	3.36 (2.64-4.22)	4.22 (3.30-5.32)	4.93 (3.83-6.25)	5.90 (4.44-7.85)	6.65 (4.88-9.04)	7.42 (5.28-10.5)	8.26 (5.58-12.0)	9.45 (6.14-14.3)	10.4 (6.59-16.1)
15-min	2.22 (1.75-2.79)	2.63 (2.07-3.31)	3.30 (2.58-4.17)	3.86 (3.00-4.90)	4.63 (3.48-6.16)	5.21 (3.83-7.09)	5.82 (4.14-8.22)	6.48 (4.38-9.42)	7.41 (4.81-11.2)	8.16 (5.17-12.6)
30-min	1.53 (1.21-1.92)	1.82 (1.43-2.28)	2.28 (1.78-2.88)	2.67 (2.07-3.39)	3.20 (2.40-4.25)	3.60 (2.65-4.89)	4.01 (2.86-5.68)	4.47 (3.02-6.51)	5.12 (3.32-7.74)	5.64 (3.57-8.72)
60-min	0.977 (0.768-1.23)	1.16 (0.910-1.46)	1.45 (1.14-1.83)	1.70 (1.32-2.16)	2.04 (1.53-2.71)	2.30 (1.69-3.12)	2.56 (1.82-3.62)	2.85 (1.93-4.15)	3.27 (2.12-4.94)	3.60 (2.28-5.56)
2-hr	0.628 (0.498-0.784)	0.742 (0.588-0.926)	0.929 (0.732-1.16)	1.08 (0.849-1.37)	1.30 (0.984-1.72)	1.46 (1.08-1.98)	1.63 (1.17-2.31)	1.83 (1.24-2.64)	2.13 (1.38-3.20)	2.38 (1.51-3.66)
3-hr	0.482 (0.383-0.598)	0.570 (0.453-0.709)	0.714 (0.565-0.891)	0.834 (0.656-1.05)	0.999 (0.762-1.32)	1.12 (0.837-1.52)	1.25 (0.911-1.78)	1.41 (0.960-2.04)	1.66 (1.08-2.49)	1.87 (1.19-2.86)
6-hr	0.305 (0.244-0.376)	0.364 (0.291-0.449)	0.460 (0.367-0.570)	0.540 (0.428-0.673)	0.649 (0.499-0.855)	0.730 (0.550-0.986)	0.819 (0.600-1.16)	0.929 (0.633-1.33)	1.10 (0.718-1.63)	1.25 (0.795-1.89)
12-hr	0.188 (0.152-0.230)	0.227 (0.183-0.279)	0.291 (0.234-0.359)	0.345 (0.275-0.427)	0.418 (0.323-0.546)	0.472 (0.357-0.633)	0.531 (0.391-0.746)	0.603 (0.413-0.858)	0.715 (0.469-1.06)	0.811 (0.519-1.22)
24-hr	0.112 (0.091-0.136)	0.137 (0.111-0.167)	0.178 (0.144-0.217)	0.212 (0.170-0.260)	0.258 (0.201-0.336)	0.293 (0.223-0.390)	0.330 (0.244-0.461)	0.376 (0.259-0.532)	0.447 (0.294-0.655)	0.508 (0.326-0.760)
2-day	0.064 (0.052-0.077)	0.078 (0.064-0.095)	0.103 (0.084-0.124)	0.123 (0.099-0.150)	0.150 (0.118-0.194)	0.171 (0.131-0.226)	0.193 (0.144-0.268)	0.220 (0.152-0.309)	0.263 (0.174-0.383)	0.300 (0.193-0.446)
3-day	0.046 (0.038-0.055)	0.057 (0.047-0.068)	0.074 (0.061-0.090)	0.089 (0.072-0.108)	0.109 (0.086-0.140)	0.124 (0.095-0.163)	0.140 (0.105-0.193)	0.160 (0.111-0.223)	0.191 (0.127-0.277)	0.218 (0.141-0.323)
4-day	0.037 (0.031-0.044)	0.045 (0.038-0.055)	0.059 (0.049-0.072)	0.071 (0.058-0.086)	0.087 (0.069-0.112)	0.099 (0.076-0.130)	0.112 (0.084-0.154)	0.128 (0.088-0.178)	0.153 (0.101-0.221)	0.174 (0.113-0.258)
7-day	0.025 (0.021-0.030)	0.030 (0.025-0.036)	0.039 (0.033-0.047)	0.047 (0.038-0.056)	0.057 (0.045-0.073)	0.065 (0.050-0.084)	0.073 (0.055-0.100)	0.083 (0.058-0.115)	0.099 (0.066-0.142)	0.113 (0.073-0.165)
10-day	0.020 (0.017-0.024)	0.024 (0.020-0.029)	0.031 (0.026-0.037)	0.036 (0.030-0.044)	0.044 (0.035-0.056)	0.050 (0.039-0.064)	0.056 (0.042-0.076)	0.063 (0.044-0.087)	0.074 (0.050-0.107)	0.084 (0.055-0.123)
20-day	0.015 (0.012-0.017)	0.017 (0.014-0.020)	0.020 (0.017-0.024)	0.023 (0.019-0.028)	0.027 (0.022-0.034)	0.030 (0.023-0.038)	0.033 (0.025-0.044)	0.037 (0.026-0.050)	0.042 (0.028-0.059)	0.046 (0.030-0.067)
30-day	0.012 (0.010-0.014)	0.014 (0.011-0.016)	0.016 (0.013-0.019)	0.018 (0.015-0.021)	0.021 (0.017-0.026)	0.023 (0.018-0.029)	0.025 (0.019-0.033)	0.027 (0.019-0.037)	0.030 (0.020-0.042)	0.032 (0.021-0.047)
45-day	0.010 (0.009-0.012)	0.011 (0.009-0.013)	0.013 (0.011-0.015)	0.014 (0.012-0.017)	0.016 (0.013-0.020)	0.017 (0.014-0.022)	0.019 (0.014-0.024)	0.020 (0.014-0.027)	0.022 (0.015-0.031)	0.023 (0.015-0.033)
60-day	0.009	0.010	0.011	0.012	0.013 (0.011-0.016)	0.014	0.016	0.016	0.018	0.018

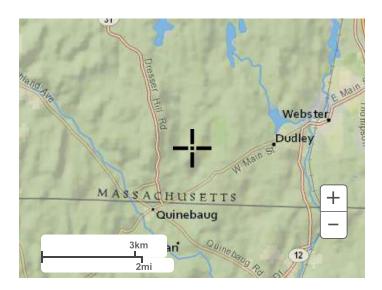

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

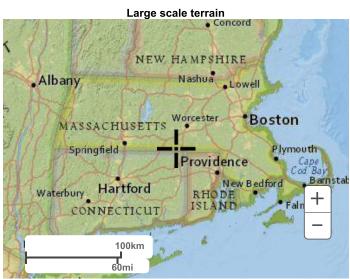
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

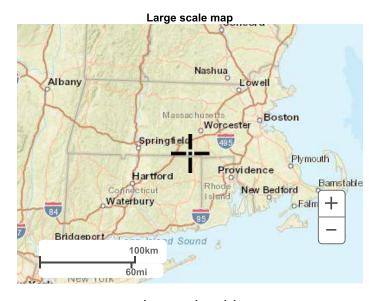
Please refer to NOAA Atlas 14 document for more information.

Back to Top

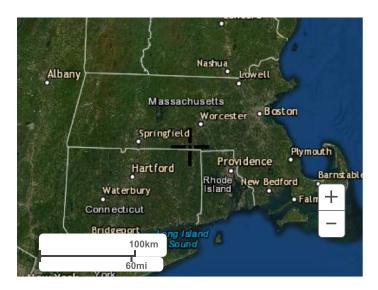
PDS-based intensity-duration-frequency (IDF) curves Latitude: 42.0417°, Longitude: -71.9342°

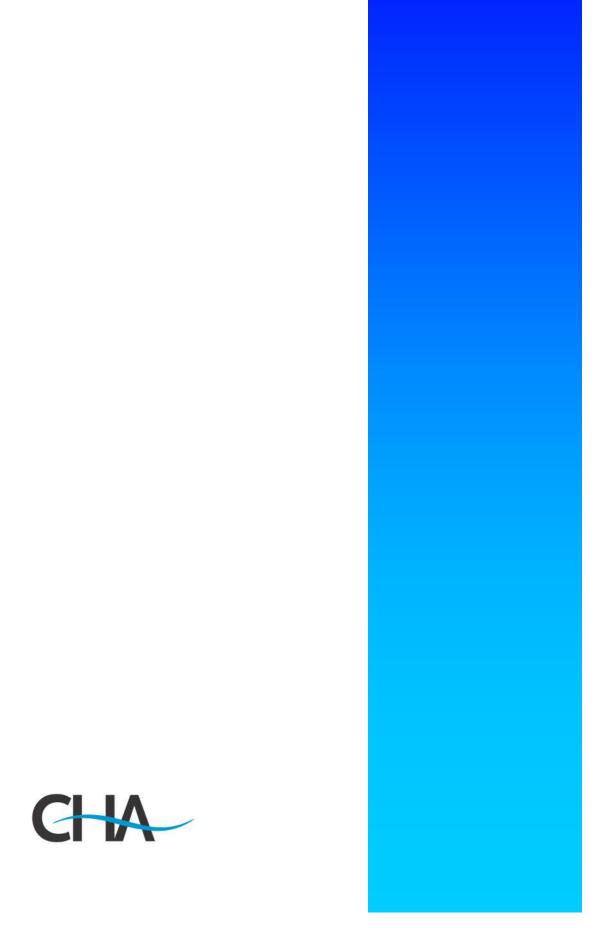

NOAA Atlas 14, Volume 10, Version 3


Created (GMT): Sun May 22 20:01:48 2022


Back to Top

Maps & aerials


Small scale terrain


Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

